a2 United States Patent

Khosravi et al.

US009137659B2

US 9,137,659 B2
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR DECOUPLING
USER AUTHENTICATION AND DATA
ENCRYPTION ON MOBILE DEVICES

(71) Applicant: FusionPipe Software Solutions Inc.,
Vancouver (CA)

(72) Inventors: Hassan Khosravi, Vancouver (CA);

Ildar Muslukhov, Vancouver (CA);

Peter Luong, Vancouver (CA)

(73)

Assignee: FusionPipe Software Solutions Inc.,

Vancouver, BC (CA)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.
2D 13/943,070
(22)

(65)

Appl. No.:

Filed: Jul. 16, 2013

Prior Publication Data

US 2014/0321641 Al Oct. 30, 2014
Related U.S. Application Data

Continuation of application
PCT/CA2013/050528, filed on Jul. 8, 2013.

Provisional application No. 61/816,123, filed on Apr.
25, 2013.

Foreign Application Priority Data

(63) No.

(60)

(30)

................ PCT/CA2013/050528

Jul. 8, 2013

(51) Int.CL
HO4L 9/00
HO4W 12/04

(WO)

(2006.01)
(2009.01)

(Continued)

(52) US.CL
CPC HO4W 12/04 (2013.01); HO4L 9/0822
(2013.01); HO4L 9/0844 (2013.01); HO4L
9/0894 (2013.01); HO4L 63/061 (2013.01);
HO4L 2209/80 (2013.01); HO4L 2463/062

(2013.01)

1502
o

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,405,829 A 9/1983 Rivest et al.
5,850,444 A * 12/1998 Rune

(Continued)

705/79

FOREIGN PATENT DOCUMENTS

EP 1 880 569 1/2008

2363977 Al 9/2011
(Continued)

OTHER PUBLICATIONS

International Search Report and Written Opinion for corresponding
International Patent Application No. PCT/CA2013/050528 (Jan. 24,
2014).

Primary Examiner — Brandon Hoffman
(74) Attorney, Agent, Firm — LeClairRyan,
Professional Corporation

or a

(57) ABSTRACT

A method for decoupling user authentication and data
encryption on mobile devices includes generating an encryp-
tion key (“EK”) for encrypting data and a key encryption key
(“KEK”) for encrypting the EK, obtaining an encrypted EK
by encrypting the EK using the KEK, storing the encrypted
EK on a data container device (“DCD”), and storing the KEK
on a key vault device (“KVD”) that is distinct from the DCD.
Neither the EK nor KEK are generated using a user authen-
tication secret as a seed. The DCD may fetch the KEK from
the KVD as desired to decrypt the EK and to encrypt and
decrypt data stored on the DCD. Examples of the DCD
include a memory stick, smartphone, or tablet computer,
while examples of the KVD include a dongle, smartphone, or
tablet computer.

79 Claims, 17 Drawing Sheets

1500

i

GENERATE THE EK AND KEK, WHEREIN NEITHER THE EK NOR THE
KEK ARE GENERATED USING A USER AUTHENTICATION SECRET AS|
ASEED

5%

OBTAIN AN ENCRYPTED EK BY ENCRYPTING THE EK USING THE
KEK

!

1508

'STORE THE ENCRYPTED EK ON THE DCD

i

1510

i

1512

| STORE THE KEK ON THE D ‘

DELETE THE KEK FROM THE DCD

!

1514

WIRELESSLY RETRIEVE TO THE DCD, FROM THE KVD. THE KEK

i

1516

‘ DECRYPT THE ENGRYPTED EX ‘

!

1518

ENCRYPT OR DECRYPT THE DATA ON THE DCD USING THE EK

END

1520

US 9,137,659 B2

Page 2
(51) Int.ClL 2013/0102251 Al 4/2013 Linde et al.
HO04L 9/08 (2006.01)
HO4L 2906 (2006.01) FOREIGN PATENT DOCUMENTS
(56) References Cited EP 2523417 A1 11/2012
Jp 2003264548 A 9/2003
U.S. PATENT DOCUMENTS Jp 2010199979 A 9/2010
WO 02/056536 Al 7/2002
7,463,861 B2 12/2008 Eisenbach WO 2006/121393 A1 11/2006
8,112,638 B2 2/2012 Almgren WO 2011/056700 A2 5/2011

8,190,129 B2 5/2012 Ayed
2009/0150970 A1 6/2009 Hinds et al. * cited by examiner

F .0—& x@o_‘

US 9,137,659 B2

Sheet 1 of 17

Sep. 15, 2015

/
p WY LYQ Pvilva
SRS N @ o @
AT D =N k _ /\U ﬂ\r@
U Y3 INEIVE!
TSV I'L# M3 HLIM Q3 1dAYONT
/o:
AP IVEN ¥
L]
AT DEN \\@
. V 0 OREE NESE
L L# M3 o I L# M3 HLIM Q3LdAYONI
¥el

U.S. Patent

,/No l

-

¥0l

US 9,137,659 B2

\Ne ¢ 'Old

U 1vd
@ TER I EN
80 :
90l
y1lva

Sheet 2 of 17

o
-

0|
-—

|

[}

Sep. 15, 2015

(3]
-—

™3 @ Z =% Max
\.\l}
(\
\l\}
hiva

L=tar Mav

&

U.S. Patent

INEDeE @
LIEN

pLL =)

US 9,137,659 B2

Sheet 3 0f 17

Sep. 15, 2015

U.S. Patent

paysl|ige}s3 MES MaN V¢ Old
- CEER
PaiLdA MES MON ed)7a 7L
- >
(ya)**53 9 DOYLIOA HES MON

AoxiandanM pue Aeyanddod uim Mes mau endwod god pue dAM uog

= (rakeMandanayesms -

oy ‘died Aoy . 7o ‘ned Aoy

HAO3 AMM (ed'aI0oI AoyandanyyesM v Hao3 aod
pejeonUBLIny Qog <010 oUF We [, Za) T €

(.aAY 8y We |2y’ LY)esMg g pe1EONUBYINY A
1 A [
24 MZSM RIGENT IR 1Y MZSM
amm aona

US 9,137,659 B2

Sheet 4 of 17

Sep. 15, 2015

U.S. Patent

d¢ old
4S1v4/dNdL ais SUWEN]ISS
ASTv4/dNdL ali M3aA JENEIE T
3STV4/AaNyL] al ¥IMMIM Aayjeyepdn
ar M3 NEN JENEISIS
NEN al M3y JENELETEN
peojAedasuodsay peojAed apooisanbay
(peojAeqosuodsoy ‘| 4)*€S3 'z >
-
‘pDeojAed‘aponisanbay)Mesy -
e (1Y‘peojhed‘spoD) H)Mesg oy asa

US 9,137,659 B2

Sheet 5 0f 17

Sep. 15, 2015

102
\

Nl
EK #1
o =
DATA,
EK #n
© —
DATA,

| I o
_ __ u/ S
N | -
_ M~ i @) <t © o] =]
| 1j 1 D) [t) LO)| | ol
_ _ ~ ~ Ll | ~ o~
I __ , o -~
] __ -
| | ﬂ (]
0| 1
© < ©
_ of | Y — I o
i T | — \ «—
| __ *
] :
|] i o .
| | © #* :
_ ! =
— __
_ | © O m
! | __ © © -
I =] b I 1 I *
| o < _“
I & :
1 1 N W —
_ < ! |~
_ = ! !
| - o
| © To
X
© <t
| ~ 6_ X)
~ wl X
| i
< 4
] [BR]
|
|
|
|
l

U.S. Patent

FIG. 4

U.S. Patent Sep. 15, 2015 Sheet 6 of 17 US 9,137,659 B2

104 148 — 134
\ ’/-133
gy [———————— T l
R 173 |
| 177 179 |
! 171 '
' 175 :
|
| T) |
[169]
| 167 |
' 165 '
T T _____I
N TS
|
| 115 135 :
|
|
: /136:
| L 151 |
| 138 :
| 155 |
|
| |
I 157 |
i I
! 159 ||
: 142]
|
: 161 I
| |
| 163 |
|
|
]
|
L v 2 w7 ¥
|
| KEK @/ V @’ @(129 |
| #1 #2 #3 #n l
R N |

U.S. Patent Sep. 15, 2015 Sheet 7 of 17 US 9,137,659 B2

o

% o]
-
<t
[s0] o Q)
0 | ® € 0| =
-~ - |
&]
—h |
L
o < N
O
e ® 2
<
(]
bl

FIG. 6

US 9,137,659 B2

Sheet 8 of 17

Sep. 15, 2015

U.S. Patent

(NOILIONOD LS31) HV3NIT ---- (NOILIONOD TOHLNOD) H¥3INI T~

L 'Old

~ {s) 3L NOILIGNOD LSTL reeves NOILIONOD TOHINOD» e
ooose 0000z DO0SE 00001 Q00s]
YUYW 00T "y e
APPU-GG e _.;m..; -
| ////ff 5666°0 =24
., 992 +XZTPS00- =
I.Nr.sc
9666°0 = o /,nﬂf,
G'GIZL +XTTGO0-=A Q-
“ﬁn.,.,,.:
il.ﬁf i
Ry

00¢

oY

+ 009

Cos

000l

00ZL

- Qo¥l

(Uyw) ALIOYdYD LNIUNND A¥ALIVE

US 9,137,659 B2

Sheet 9 of 17

Sep. 15, 2015

U.S. Patent

‘S = SNLVIS

o_ww.\

'S =SNLvlS

wmw\\

I5 =gNnLvls

N_‘W\ 0l

<dIONVYA NIEAAM
S1HOdId NSAM

008 .

‘g =SNLVLS

808

¢SHNOH ¢L
1SV NI Q0d HLIM
A3LvIINNAWNOD
anx svH

8 'Old

¢SHNOH 1L
1SV NI d0d H1IiM
a3aLvOINNWINOD

% - SLvLS aAY SYH
= pES
SIAA A
OZ \mm_>
¢(INFWNOHIANT LONINVOY

34YS NI AN Si
0¢

1avIIvAY
AONINO3YAS
olavy

1Yvls

208

-

ON any st
828

¢413S11 31v00
AAM NVYD

US 9,137,659 B2

Sheet 10 of 17

Sep. 15, 2015

U.S. Patent

S =SNLV1S

ot~ t

'S =8NLvLS

e’ 1

MOVLLY 40 ALITEISSOd

ONAS 40 LNO ATN HO HIOVLLY AdM
@3INOTO 40 ALITIFISSOd

y
wom.\

N_‘mk

¢ATN A3LVILODAN

ON

006

ATISNOIATYHd
v AT 8.000 Sl

EATA AINVA
IAVH @0Qd s300

1YV1S

206

98 = SN1V1S
h
26—
Q€093 4333 ANV
A SNOIATHd 3SN d
omm\ ON
S3A
816

AT MAN JLVILOOIN

m_‘m.\

6 ©Old

US 9,137,659 B2

Sheet 11 of 17

Sep. 15, 2015

U.S. Patent

‘S = SNLV1LS

JNIL
— ANV SNLVLS dAM NO
a3svy SHIM HSNTd

ONISSIWN 31H0d3d
aoa 41 INSAM 1170d

99k

SAIM NOILdAYONI
M3IN FLVILOOIAN
98 =gNivis

ONILOINNCD FONIS
43SSvd SYH 1L INIL

900 _..\

00

-

0001

1dvis

c001

0l 'OId

US 9,137,659 B2

Sheet 12 of 17

Sep. 15, 2015

U.S. Patent

0011

‘S =SNLVIS

vv:\

¢d3ONVA NI dOd
S1d0d3d WSAM

AONINOIHS

1dVvLS

Vil "Old

US 9,137,659 B2

Sheet 13 0of 17

Sep. 15, 2015

U.S. Patent

A

29 = SNLVLS
g~ A

\ ASAY O1
180d3y

TYNOIS

139 0L SAGOHLIN
10d AINOH
ONISN AYL

N:_‘k

» 'S=SNLVIS [« —

NNS.\

\ NSAN O1 \
130d3y

ON_\P\mm;

INAVIIVAY
TYNOIS

0Ll

¢8183N0IY

90l

4VY1vd SS300V

IdILINN

LALINIXOdd
NI dAM

98 =SNLVLIS [«

WSAM OL ATM
SNOIDIdSNS
140d3d

{ITGVTIVAY
TYNDIS

MOVLLY
INOTD 3191SS0d

SANTVA AT
aaNygnL3y

AT HLIM
v.lva 1S3Nnodd

@N:\

¢Y1V(QJ SS300V

vl FK

ayoo3d
d33M ANV AIH
SNOINTHd 38N

0014

ON ov:\OZ
S3A
8Cl)
AT MEN
SIA | ILVILOO3IN
@m:.\
dil Old

US 9,137,659 B2

¢l "Old

OONv/

r\ am ol ana ol \
w\ SNLVLS HSNd SNLVLS HSNd \A

Sheet 14 of 17

Sep. 15, 2015

U.S. Patent

80¢

NLv.1lS dod sv

]

,_.H ON A1VNIVATI-3d

vz » zeer A
- ana 40 any 40 >
”| Sn1vLs 3Lvadn SNLVLS 31YadN
- _/
- 1z’ 05Tk
//
¢AIDNYHD SNLVLS LOIONYHD

o_‘NT\

SNLVLS
: aod
NOM: L8202 NO 0/ WOM3
IAI303Y 1¥0d3¥ 3AIFO3Y
pozi—’ o0z~

(avis)
18IS

NLVLS dAM SV

anA
NO 3dOQ WO4d4
140d3d IAIFOF

9¢c T\

[4014 _‘H

SNLVLS
anx ‘34 aad
NOYd 1LS3N03Y
EINESE!-!

vNN_\

U.S. Patent Sep. 15, 2015 Sheet 15 of 17 US 9,137,659 B2

FIG. 13

&

—

134

.
|

U.S. Patent Sep. 15, 2015 Sheet 16 of 17 US 9,137,659 B2
102 > 104
< KEK; 1408
Exexi(EK)
Eruskev(EK) PRIVKEY
1402—/
Y
102 ™ 1408
EvpfEK)
Eruekev(EK) | » PRIVKEY
1404
Y
102 1408
EgalEKy)
Epuekev(EK) la—m 104 PRIVKEY
Exexi(EKS) KEK;

1406j

FIG. 14

k1 400

U.S. Patent

Sep. 15, 2015

Sheet 17 of 17

1502
(START }—

Y

US 9,137,659 B2

1504
/‘

GENERATE THE EK AND KEK, WHEREIN NEITHER THE EK NOR THE
KEK ARE GENERATED USING A USER AUTHENTICATION SECRET AS

A SEED

1506

\i -
OBTAIN AN ENCRYPTED EK BY ENCRYPTING THE EK USING THE
KEK
{ 1508
STORE THE ENCRYPTED EK ON THE DCD

1510

Y e
STORE THE KEK ON THE KVD

1512

Y -
DELETE THE KEK FROM THE DCD

1514

y a
WIRELESSLY RETRIEVE TO THE DCD, FROM THE KVD, THE KEK

1516

Y -
DECRYPT THE ENCRYPTED EK

1518

y -

ENCRYPT OR DECRYPT THE DATA ON THE DCD USING THE EK

FIG. 15

Y 1520
END

US 9,137,659 B2

1
METHOD AND SYSTEM FOR DECOUPLING
USER AUTHENTICATION AND DATA
ENCRYPTION ON MOBILE DEVICES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of International Appli-
cation No. PCT/CA2013/050528, filed Jul. 8, 2013, which
claims the benefit of Provisional Application No. 61/816,123,
filed Apr. 25, 2013, the entireties of both of which are hereby
incorporated by reference.

TECHNICAL FIELD

The present disclosure is directed at methods, systems, and
techniques for decoupling user authentication and data
encryption on mobile devices.

BACKGROUND

Smartphones and tablets are among the most ubiquitous
personal computing devices in use today. Smartphones and
tablets are designed to be more mobile than laptop or desktop
computers; this results in their being easier to steal and more
likely to be lost. One issue that arises when a mobile device
such as a smartphone or tablet is lost or stolen is whether the
data contained on that mobile device is secure; i.e., whether
unauthorized access to the data is being prevented.

A thief who steals a mobile device has the opportunity to
run off-line, brute force attacks in an attempt to discover the
authentication secrets (e.g.: PIN-codes) and encryption keys
that the rightful owner of the device uses to protect the data. A
mobile device’s owner may not even realize that his or her
device has been attacked in this way; for example, an untrust-
worthy coworker or family member may perform a “lunch-
time-attack” by borrowing the mobile device and attacking it
while borrowed.

Defending against unauthorized access of data is being
complicated by companies more widely adopting Bring-
Your-Own-Device (“BYOD”) policies. In particular, BYOD
policies increase the complexity of device management for
information technology (“IT”) departments due to the higher
variety of devices that employees typically use once a com-
pany adopts a BYOD policy.

Given the foregoing, there exists a continued need to pro-
tect and secure data, and in particular data stored on mobile
devices.

SUMMARY

According to a first aspect, there is provided a method for
decoupling user authentication and data encryption on mobile
devices, the method comprising generating an encryption key
(“EK”) for encrypting data and a key encryptionkey (“KEK”)
for encrypting the EK, wherein neither the EK nor the KEK
are generated using a user authentication secret as a seed;
obtaining an encrypted EK by encrypting the EK using the
KEK; storing the encrypted EK on a data container device
(“DCD”); and storing the KEK on a key vault device
(“KVD?) that is distinct from the DCD.

The method may further comprise generating a KEK iden-
tifier (“KEK_ID”) that identifies the KEK; and storing the
KEK_ID in memory accessible to an application resident on
the DCD that accesses the data and on the KVD.

10

15

20

25

30

35

40

45

50

55

60

65

2

The DCD may generate the KEK, the EK, and the
KEK_ID, and the method may further comprise deleting the
KEK from the DCD following encrypting the EK.

The application may encrypt or decrypt the data by obtain-
ing the EK; encrypting or decrypting the data using the EK;
and deleting the EK following encryption or decryption.

Obtaining the EK may comprise sending a request from the
application for the EK, wherein the request comprises the
KEK_ID; retrieving, from the KVD, the KEK that the
KEK_ID identifies; decrypting, on the DCD, the EK
encrypted using the KEK retrieved from the KVD; and send-
ing the EK decrypted using the KEK to the application.

Obtaining the EK may comprise sending a request from the
application for the EK, wherein the request comprises the
KEK_ID; determining whether the EK is cached on the DCD;
and when the EK is cached on the DCD, sending the EK that
is cached on the DCD to the application.

The method may further comprise safeguarding the data by
deleting one or both of the EK and KEK.

The DCD may comprise a memory stick.

The EK and KEK may expire, and the method may further
comprise replacing the EK and KEK that expire with a dif-
ferent EK and a different KEK, respectively.

The KVD and DCD may be wirelessly linked.

The Bluetooth™ Low Energy protocol may be used to link
the KVD and DCD.

The method may further comprise determining whether the
KVD and DCD cease to be wirelessly linked; and deleting the
EK from the DCD when the KVD and DCD cease to be
wirelessly linked.

The method may further comprise wirelessly pairing the
KVD and DCD by generating a weak shared secret key
(“WS2K”) on the KVD and DCD; mutually authenticating
the KVD and DCD to each other using the WS2K; following
mutual authentication, generating a strong secure session key
(“S3K”) on the KVD and DCD; and encrypting subsequent
communications between the KVD and DCD using the S3K.

The S3K may expire and the method may further comprise
replacing the S3K that expires with a different S3K.

An Out of Bounds or Passkey Entry Bluetooth™ Low
Energy association model may be used to generate the WS2K.

A key vault system manager (“KVSM”) may be wirelessly
communicative with at least one of the KVD and DCD, and
the method may further comprise sending device health infor-
mation from each of the at least one of the KVD and DCD to
the KVSM; determining a health status of each of the at least
one of the KVD and DCD based on the device health infor-
mation; deleting the EK and KEK based on the health status.

The at least one of the KVD and DCD may determine its
own health status.

The KVSM may determine the health status of each of the
at least one of the KVD and DCD and it may push the health
status to each of the at least one of the KVD and DCD.

The method may further comprise backing up the EK,
KEK, and KEK_ID by pushing them from the DCD and KVD
to the KVSM.

The EK may be encrypted using a public key having a
linked private key, and the method may further comprise
recovering encrypted data following loss of one or both of the
encrypted EK and KEK by decrypting, using the private key,
the EK encrypted using the public key; generating a new
KEK, wherein the new KEK is not generated based on the
user authentication secret; generating a new encrypted EK by
encrypting the EK using the new KEK; storing the new

US 9,137,659 B2

3
encrypted EK on the DCD; and storing the new encrypted
KEK on the KVD.

The EK and KEK may be generated pseudorandomly.

According to another aspect, there is provided a method for
decoupling user authentication and data encryption on mobile
devices, the method comprising decrypting an encrypted
encryption key (“EK”) stored on a data container device
(“DCD”) by 1) wirelessly retrieving to the DCD from a key
vault device (“KVD”) a key encryption key (“KEK”) used to
encrypt the EK; and ii) decrypting the encrypted EK using the
KEK; and encrypting or decrypting data stored on the DCD
using the EK, wherein neither the EK nor the KEK are gen-
erated using a user authentication secret as a seed.

The method may further comprise deleting the EK from the
DCD following encrypting or decrypting data.

The method may further comprise, prior to decrypting the
encrypted EK, generating the EK and the KEK; obtaining the
encrypted EK by encrypting the EK using the KEK; storing
the encrypted EK on the DCD; and storing the KEK on the
KVD.

The method may further comprise generating a KEK iden-
tifier (“KEK_ID”) that identifies the KEK; and storing the
KEK_ID in memory accessible to an application resident on
the DCD that accesses the data and on the KVD.

The DCD may generate the KEK, the EK, and the
KEK_ID, and the method may further comprise deleting the
KEK from the DCD following encrypting EK.

Wirelessly retrieving the KEK from the KVD may com-
prise sending a request for the KEK_ID from the DCD to the
KVD, wherein the request comprises the KEK_ID; and send-
ing the KEK that the KEK_ID identifies from the KVD to the
DCD.

The method may further comprise safeguarding the data by
deleting one or both of the EK and KEK.

The DCD may comprise a memory stick.

The EK and KEK may expire and the method may further
comprise replacing the EK and KEK that expire with a dif-
ferent EK and a different KEK, respectively.

The Bluetooth™ Low Energy protocol may be used to link
the KVD and DCD.

The method may further comprise determining whether the
KVD and DCD cease to be wirelessly linked; and deleting the
EK from the DCD when the KVD and DCD cease to be
wirelessly linked.

The method may further comprise wirelessly pairing the
KVD and DCD by generating a weak shared secret key
(“WS2K”) on the KVD and DCD; mutually authenticating
the KVD and DCD to each other using the WS2K; following
mutual authentication, generating a strong secure session key
(“S3K”) on the KVD and DCD; and encrypting subsequent
communications between the KVD and DCD using the S3K.

The S3K may expire and the method may further comprise
replacing the S3K that expires with a different S3K.

An Out of Bounds or Passkey Entry Bluetooth™ [ow
Energy association model may be used to generate the WS2K.

A key vault system manager (“KVSM”) may be wirelessly
communicative with at least one of the KVD and DCD, and
the method may further comprise sending device health infor-
mation from each of the at least one of the KVD and DCD to
the KVSM; determining a health status of each of the at least
one of the KVD and DCD based on the device health infor-
mation; and deleting the EK and KEK based on the health
status.

At least one of the KVD and DCD may determine its own
health status.

10

15

20

25

30

35

40

45

50

55

60

65

4

The KVSM may determine the health status of each of the
at least one of the KVD and DCD and push the health status
to each of the at least one of the KVD and DCD.

The method may further comprise backing up the EK,
KEK, and KEK_ID by pushing them from the DCD and KVD
to the KVSM.

The EK may be encrypted using a public key having a
linked private key, and the method may further comprise
recovering encrypted data following loss of one or both of the
encrypted EK and KEK by decrypting, using the private key,
the EK encrypted using the public key; generating a new
KEK, wherein the new KEK is not generated based on the
user authentication secret; generating a new encrypted EK by
encrypting the EK using the new KEK; storing the new
encrypted EK on the DCD; and storing the new encrypted
KEK on the KVD.

The EK and KEK may be generated pseudorandomly.

According to another aspect, there is provided a system for
decoupling user authentication and data encryption on mobile
devices, the system comprising a data container device
(“DCD”) wirelessly linked to a key vault device (“KVD”), the
DCD comprising a DCD memory and a DCD controller com-
municative with the DCD memory, the DCD memory having
encoded thereon statements and instructions cause the DCD
controller to generate an encryption key (“EK”) for encrypt-
ing data and a key encryption key (“KEK”) for encrypting the
EK, wherein neither the EK nor the KEK are generated using
auser authentication secret as a seed; obtain an encrypted EK
by encrypting the EK using KEK; store the encrypted EK in
the DCD memory; and send the KEK to the KVD; the KVD
comprising a KVD memory and a KVD controller commu-
nicative with the KVD memory, the KVD memory having
encoded thereon statements and instructions to cause the
KVD controller to receive the KEK from the DCD; and store
the KEK in the KVD memory.

The DCD memory may be further encoded to cause the
DCD controller to generate a KEK identifier (“KEK_ID”)
that identifies the KEK; and store the KEK_ID in the DCD
memory, wherein the DCD memory is accessible to an appli-
cation resident on the DCD that accesses the data.

The DCD memory may be further encoded to cause the
DCD controller to generate the KEK, the EK, and the
KEK_ID, and to delete the KEK from the DCD following
encrypting the EK.

The DCD memory may be further encoded to cause the
application to encrypt or decrypt the data by obtaining the
EK; encrypting or decrypting the data using the EK; and
deleting the EK following encryption or decryption.

Obtaining the EK may comprise sending a request from the
application for the EK, wherein the request comprises the
KEK_ID; retrieving, from the KVD, the KEK that the
KEK_ID identifies; decrypting, on the DCD, the EK
encrypted using the KEK retrieved from the KVD; and send-
ing the EK decrypted using the KEK to the application.

Obtaining the EK may comprise sending a request from the
application for the EK, wherein the request comprises the
KEK_ID; determining whether the EK is cached on the DCD;
and when the EK is cached on the DCD, sending the EK that
is cached on the DCD to the application.

The DCD memory may be further encoded to cause the
DCD controller to safeguard the data by deleting one or both
of the EK and KEK.

The DCD may comprise a memory stick.

The DCD memory may be further encoded to cause the EK
and KEK to expire and to cause the DCD controller to replace
the EK and KEK that expire with a different EK and a differ-
ent KEK, respectively.

US 9,137,659 B2

5

The Bluetooth™ Low Energy protocol may be used to link
the KVD and DCD.

The DCD memory may be further configured to cause the
DCD controller to determine whether the KVD and DCD
cease to be wirelessly linked; and delete the EK from the
DCD when the KVD and DCD cease to be wirelessly linked.

The DCD memory and KVD memory may be further
encoded to cause the DCD and KVD, respectively, to wire-
lessly pair with each other by generating a weak shared secret
key (“WS2K”) on the KVD and DCD; mutually authenticat-
ing the KVD and DCD to each other using the WS2K; fol-
lowing mutual authentication, generating a strong secure ses-
sion key (“S3K”) on the KVD and DCD; and encrypting
subsequent communications between the KVD and DCD
using the S3K.

The S3K may expire and the DCD memory and the KVD
memory may be further encoded to cause the DCD and KVD,
respectively, to replace the S3K that expires with a different
S3K.

An Out of Bounds or Passkey Entry Bluetooth™ [ow
Energy association model may be used to generate the WS2K.

The system may further comprise a key vault system man-
ager (“KVSM”) wirelessly communicative with the KVD and
DCD, the KVSM comprising a KVSM memory communica-
tive with a KVSM controller, the KVSM memory having
encoded thereon statements and instructions to cause the
KVSM controller to receive device health information from
the KVD and DCD, wherein the DCD memory and the KVD
memory are further encoded to cause the DCD controller and
the KVD controller, respectively, to send device health infor-
mation to the KVSM.

The DCD memory and the KVD memory may be further
encoded to cause the DCD controller and the KVD controller,
respectively, to determine the health status of the DCD and
the KVD, respectively, from the device health information;
and delete the EK and KEK based on the health status.

The KVSM memory may be further encoded to cause the
KVSM controller to determine health statuses of the KVD
and DCD from the device health information; and push the
health statuses to the KVD and DCD, wherein the DCD
memory and the KVD memory are further encoded to cause
the DCD controller and the KVD controller, respectively, to
delete the EK and KEK based on one or more of the health
status.

The DCD memory and the KVD memory may be further
encoded to back up the EK, KEK, and KEK_ID by pushing
them to the KVSM.

The DCD memory may have stored thereon the EK
encrypted using a public key having a linked private key, and
the DCD memory may be further encoded to cause the DCD
controller to decrypt, using the private key, the EK encrypted
using the public key; generate a new KEK, wherein the new
KEK is not generated based on the user authentication secret;
generate a new encrypted EK by encrypting the EK using the
new KEK; store the new encrypted EK in the DCD memory;
and send the new encrypted KEK to the KVD for storage.

The EK and KEK may be generated pseudorandomly.

According to another aspect, there is provided a system for
decoupling user authentication and data encryption on mobile
devices, the system comprising a data container device
(“DCD”) wirelessly linked to akey vault device (“KVD”), the
DCD comprising a DCD memory and a DCD controller com-
municative with the DCD memory and the KVD comprising
a KVD memory and a KVD controller communicative with
the KVD memory, the DCD memory having encoded thereon
statements and instructions to cause the DCD controller to
decrypt an encrypted encryption key (“EK”) stored in the

10

15

20

25

30

35

40

45

50

55

60

6

DCD memory by 1) wirelessly retrieving from the KVD a key
encryption key (“KEK”) used to encrypt the EK; and 2)
decrypting the encrypted EK using the KEK; and encrypt or
decrypt data stored in the DCD memory using the EK,
wherein neither the EK nor the KEK are generated using a
user authentication secret as a seed.

The DCD memory may be further encoded to cause DCD
controller to delete the EK following encrypting or decrypt-
ing data.

The DCD memory may be further encoded to cause the
DCD controller to generate the EK and the KEK; obtain the
encrypted EK by encrypting the EK using the KEK; store the
encrypted EK in the DCD memory; and send the KEK to the
KVD.

The DCD memory may be further encoded to cause the
DCD controller to generate a KEK identifier (“KEK_ID”)
that identifies the KEK; and store the KEK_ID in the DCD
memory, wherein the DCD memory is accessible to an appli-
cation resident on the DCD that accesses the data.

The DCD memory may be further encoded to cause the
DCD controller to generate the KEK, the EK, and the
KEK_ID, and to delete the KEK from the DCD following
encrypting the EK.

Wirelessly retrieving the KEK from the KVD may com-
prise sending a request for the KEK_ID from the DCD to the
KVD, wherein the request comprises the KEK_ID; and send-
ing the KEK that the KEK _ID identifies from the KVD to the
DCD

The DCD memory may be further encoded to cause the
DCD controller to safeguard the data by deleting one or both
of the EK and KEK.

The DCD may comprise a memory stick.

The DCD memory may be further encoded to cause the EK
and KEK to expire and to cause the DCD controller to replace
the EK and KEK that expire with a different EK and a differ-
ent KEK, respectively.

The Bluetooth™ Low Energy protocol may be used to link
the KVD and DCD.

The DCD memory may be further configured to cause the
DCD controller to determine whether the KVD and DCD
cease to be wirelessly linked; and delete the EK from the
DCD when the KVD and DCD cease to be wirelessly linked.

The DCD memory and KVD memory may be further
encoded to cause the DCD and KVD, respectively, to wire-
lessly pair with each other by generating a weak shared secret
key (“WS2K”) on the KVD and DCD; mutually authenticat-
ing the KVD and DCD to each other using the WS2K; fol-
lowing mutual authentication, generating a strong secure ses-
sion key (“S3K”) on the KVD and DCD; and encrypting
subsequent communications between the KVD and DCD
using the S3K.

The S3K may expire and the DCD memory and the KVD
memory may be further encoded to cause the DCD and KVD,
respectively, to replace the S3K that expires with a different
S3K.

An Out of Bounds or Passkey Entry Bluetooth™ Low
Energy association model may be used to generate the WS2K.

The system may further comprise a key vault system man-
ager (“KVSM”) wirelessly communicative with the KVD and
DCD, the KVSM comprising a KVSM memory communica-
tive with a KVSM controller, the KVSM memory having
encoded thereon statements and instructions to cause the
KVSM controller to receive device health information from
the KVD and DCD, wherein the DCD memory and the KVD
memory are further encoded to cause the DCD controller and
the KVD controller, respectively, to send device health infor-
mation to the KVSM.

US 9,137,659 B2

7

The DCD memory and the KVD memory may be further
encoded to cause the DCD controller and the KVD controller,
respectively, to determine the health status of the DCD and
the KVD, respectively, from the device health information;
and delete the EK and KEK based on the health status.

The KVSM controller may be further encoded to cause the
KVSM controller to determine health statuses of the KVD
and DCD from the device health information; and push the
health statuses to the KVD and DCD, wherein the DCD
memory and the KVD memory are further encoded to cause
the DCD controller and the KVD controller, respectively, to
delete the EK and KEK based on one or more of the health
status.

The DCD memory and the KVD memory may be further
encoded to back up the EK, KEK, and KEK_ID by pushing
them to the KVSM.

The DCD memory may have stored thereon the EK
encrypted using a public key having a linked private key, and
the DCD memory may be further encoded to cause the DCD
controller to decrypt, using the private key, the EK encrypted
using the public key; generate a new KEK, wherein the new
KEK is not generated based on the user authentication secret;
generate a new encrypted EK by encrypting the EK using the
new KEK; store the new encrypted EK in the DCD memory;
and send the new encrypted KEK to the KVD for storage.

The EK and KEK may be generated pseudorandomly.

According to another aspect, there is provided a method for
encrypting data, which comprises generating an encryption
key (EK) and a key encryption key (KEK); encrypting data on
a data container device (DCD) using the EK; encrypting the
EK using the KEK and storing the encrypted EK on the DCD;
storing the KEK on a key vault device (KVD); and deleting
the KEK from the DCD.

The KEK may be wirelessly transmitted to the key vault
device (KVD). Additionally or alternatively, the KEK and EK
may be generated by the DCD.

The EK and KEK may be symmetric or asymmetric cryp-
tographic keys. The EK and KEK may also expire from time
to time.

The method may further comprise wirelessly retrieving the
KEK from the KVD; decrypting the encrypted EK using the
KEK; and decrypting the data using the decrypted EK.

Wireless communication may be performed using the
Bluetooth™ low energy standard, or may be performed using
a protocol that is based on but a modification of the Blue-
tooth™ low energy standard; for example, the standard may
be modified to permit establishment of a shared, secret, and
secure key between the DCD and KVD.

According to another aspect, there is provided a system for
encrypting data, the system comprising a data container
device (DCD), the DCD comprising a DCD memory com-
municative with a DCD controller, the DCD memory having
encoded thereon statements and instructions to perform a
DCD method comprising (i) generating an encryption key
(EK) and a key encryption key (KEK); (ii) encrypting data on
the DCD using the EK; (iii) encrypting the EK using the KEK
and storing the encrypted EK on the DCD; (iv) wirelessly
transmitting the KEK; and (v) deleting the KEK. The system
also comprises a key vault device (KVD), the KVD compris-
ing a KVD memory communicative with a KVD controller,
the KVD memory having encoded thereon statements and
instructions to perform a KVD method comprising: (i) wire-
lessly receiving the KEK from the DCD; and (ii) storing the
KEK.

The EK and KEK may be symmetric or asymmetric cryp-
tographic keys. The EK and KEK may also expire from time
to time.

10

15

20

25

30

35

40

45

55

60

65

8

The DCD method may further comprise wirelessly retriev-
ing the KEK from the KVD; decrypting the encrypted EK
using the KEK; and decrypting the data using the decrypted
EK, and the KVD method may further comprise wirelessly
sending the KEK to the DCD when requested to do so by the
DCD.

Wireless communication may be performed using the
Bluetooth™ low energy standard, or may be performed using
a protocol that is based on but a modification of the Blue-
tooth™ low energy standard; for example, the standard may
be modified to permit establishment of a shared, secret, and
secure key between the DCD and KVD.

According to another aspect, there is provided a method for
decrypting data, the method comprising wirelessly retrieving
a key encryption key (KEK), wherein the KEK is used to
encrypt an encryption key (EK) that is used to encrypt the
data; decrypting the EK with the KEK; and decrypting the
data with the decrypted EK.

According to another aspect, there is provided a non-tran-
sitory computer readable medium having encoded thereon
statements and instructions to cause a controller to perform
any of the aspects of the method described above or any
suitable combination thereof.

This summary does not necessarily describe the entire
scope of all aspects. Other aspects, features and advantages
will be apparent to those of ordinary skill in the art upon
review of the following description of specific embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, which illustrate one or
more exemplary embodiments:

FIGS. 1 and 13 show block diagrams of a system for
decoupling user authentication and data encryption, accord-
ing to two embodiments.

FIGS. 2 and 4 show block diagrams of exemplary data
container devices comprising part of the system for decou-
pling user authentication and data encryption.

FIG. 3A shows an exemplary method for pairing the data
container device and a key vault device, which also comprises
part of the system for decoupling user authentication and data
encryption.

FIG. 3B shows exemplary request and response exchanges
between the data container device and the key vault device.

FIG. 5 shows a block diagram of the key vault device.

FIG. 6 shows a block diagram of a key vault system man-
ager, which also comprises part of the system for decoupling
user authentication and data encryption.

FIG. 7 shows graphs of power consumed by the data con-
tainer device when the system for decoupling user authenti-
cation and data encryption is being employed and when it
isn’t.

FIGS. 8,9, 10, 11A, 11B, and 12 show methods the data
container device, the key vault device, and the key vault
system manager employ to assess a threat status, according to
additional embodiments.

FIG. 14 shows a block diagram depicting a key restoration
process, according to another embodiment.

FIG. 15 shows an exemplary method for decoupling user
authentication and data encryption, according to another
embodiment.

DETAILED DESCRIPTION
Directional terms such as “top,” “bottom,” “upwards,”
“downwards,” “vertically,” and “laterally” are used in the

following description for the purpose of providing relative

US 9,137,659 B2

9

reference only, and are not intended to suggest any limitations
on how any article is to be positioned during use, or to be
mounted in an assembly or relative to an environment.

Over a billion people today use smartphones, which are
portable and highly mobile personal computers. Various data
is stored on these devices for the benefit of being accessible
“on-the-go”. This creates the need to protect sensitive data
that is stored on smartphones and other mobile devices such
as tablets. Data encryption with a randomly generated
encryption key can be applied. However, since the device has
to be able to work when off-line, the encryption key has to be
stored on the device along with the encrypted data. In order to
overcome this limitation, major mobile platforms typically
encrypt the encryption key with a so called “key encryption
key”. The key encryption key is derived from an authentica-
tion secret that is used to authenticate smartphone users (e.g.,
a user’s PIN-code or password). Unfortunately, PIN-codes
and passwords may be weak and accordingly prone and sus-
ceptible to bruteforce attacks.

The embodiments described herein are directed at systems,
methods, and techniques for mitigating problems related to
dependency of data encryption on weak authentication
secrets, and in particular on mobile devices such as smart-
phones, tablets, and memory sticks. This dependency can
render data encryption ineffective. The systems, methods,
and techniques described herein remove this dependency, and
thus substantially increase the amount of work a third party
who wants to get unauthorized access to the data (an “adver-
sary”) has to do in order to get that access.

The decoupling of data encryption from authentication
secrets is achieved by using random encryption keys (collec-
tively, “EKs” with each being an “EK”) for data encryption
and random key encryption keys (collectively, “KEKs” with
each being a “KEK”) for EK encryption, without involving
any authentication secret in the process of EK and KEK
generation. In the depicted embodiments this is done by gen-
erating the EK and KEK without using the user’s authentica-
tion secret as a seed; e.g., by generating the EK and KEK with
a pseudorandom number generator that does not use the
user’s authentication secret as a seed. Furthermore, KEKSs are
stored on a separate device, so that if only the mobile device
containing the data is stolen, the adversary will not be able to
decrypt any of the encrypted data.

Referring now to FIG. 1, there is shown one embodiment of
a system 100 for encrypting data. The system 100 comprises
two devices that serve different roles: one, a data container
device (“DCD”) 102, which is responsible for storing
encrypted data and encrypted EKs; and two, a key vault
device (“KVD”) 104 responsible for storing KEKs. The DCD
102 sends a request to the KVD 104 when it needs a particular
one of the KEKs to decrypt one of the encrypted EKs. This
KEK is then used to decrypt its corresponding EK and, sub-
sequently, the decrypted EK is used to decrypted the data
encrypted using that EK. The DCD 102 may be, for example,
a mobile device such as a smartphone or tablet; the KVD 104
may be, for example, a dongle carried by the mobile device’s
owner, or another smartphone or tablet as well.

Shown running on the DCD 102 is a first application,
Application #1 106a, which encrypts and decrypts data as
part of its normal operation. The data that Application #1
106a accesses is segmented into different data stores 108a,
each of which is encrypted by a different EK. FIG. 1 shows n
different encrypted data stores 108a for Application #1 106a,
labelled EK,,, ,(DATA) . . . EK,, ,,;(DATA). Each of these
data stores 108a is respectively encrypted using EK #1.1 . ..
EK #1.n,, which are stored on the DCD 102. The EKs them-
selves are respectively encrypted using KEK #1.1 . . . KEK

20

30

35

40

45

55

10
#1.n,, which are stored not on the DCD 102 but rather on the
KVD 104. The DCD 102 and KVD 104 communicate via a
wireless communication channel 110, the protocols for which
are discussed in more detail below with respect to FIG. 3A.
Any number of applications may be running on the DCD 102,
as illustrated in FIG. 1 by Application #K 106% also running
onthe DCD 102, which accesses data stores 108k respectively
encrypted using EK.., ; . . . EK,; ;. which themselves are
respectively encrypted using KEK #k.1 . . . KEK #k.n, (col-
lectively, the applications are referred to as “applications
106" and the data stores are referred to as “data stores 108™).

When one of the applications 106 needs to encrypt data that
has not been encrypted before, it requests a set of symmetric
keys, i.e. an EK and a KEK used to encrypt that EK, to be
generated. The EK and KEK may be newly generated or may
have been previously used. In response the portion of the
system 100 running on the DCD 102 (“DCD resident com-
ponent 114”) generates the two keys and attempts to save the
KEK on the KVD 104. The DCD resident component 114
runs in a trusted zone on the DCD 102, which is an indepen-
dent computing platform that provides strong security guar-
antees and verifies the integrity of the applications 106 on
every request, regardless of whether that request is to encrypt
data or, as discussed in further detail below, to decrypt data or
to delete keys. If the DCD resident component 114 deter-
mines that the integrity of the application 106 making a
request has been compromised, the DCD resident component
114 denies the request.

If the save operation is successful, i.e., the new KEK was
saved in the KVD 104, the portion of the system 100 resident
on the DCD 102 returns an identification number, a four byte
long word called a KEK_ID, for the newly generated set of
keys; otherwise it notifies the application 106 that the save
operation failed, and disregards the generated EK and KEK.
If the save operation is successful, then the application 106
receives the EK and KEK_ID. The application 106 stores the
EK only in its volatile memory (not shown), encrypts the data
with the EK, and then removes the EK from its volatile
memory. The KEK_ID is stored in the application 106’s
non-volatile memory (not shown) for future use in requesting
the EK to decrypt the encrypted data.

When that application 106 wants to decrypt data it sends an
asynchronous request to the DCD resident component 114 to
conduct a decryption operation. With the request the applica-
tion 106 also provides the KEK_ID for that data, which the
application 106 had stored in its non-volatile memory. The
DCD resident component 114 in turn determines whether the
KEK identified by that KEK_ID is cached, and if it is not,
attempts to fetch it from the KVD 104. If the KEK is success-
fully obtained either from a cache or from the KVD 104, then
the DCD resident component 114 decrypts the EK with the
KEK and returns the EK to the application 106. The applica-
tion 106 stores the EK in its volatile memory, uses it to
decrypt data, and then removes it from its volatile memory. If
the KEK is not cached and the fetch operation fails, then the
DCD resident component 114 notifies the application 106
that encryption or decryption is not currently possible. Alter-
natively, the DCD resident component 114 may perform data
encryption and decryption itself and send encrypted and
decrypted data to the applications 106.

The system 100 may be used in a variety of ways in today’s
mobile operating systems (“OSes”). Exemplary use cases
include:

1. The applications 106 encryptauser’s credentials to provide

“remember me” functionality.

2. The applications 106 encrypt a user’s data stored within the

application 106. For example, one of the applications 106

US 9,137,659 B2

11

may be a picture gallery, in which case all pictures in the

gallery would be encrypted and accordingly only acces-

sible when the KVD 104 is available for requests from the

DCD 102.
3.The OS ofthe DCD 102 encrypts the applications 106, thus

making data encryption transparent for the applications

106.

4. A storage controller encrypts data storage in the data stores

108, thus making data encryption transparent to the OS.
5. A memory stick encrypts data storage in the data stores 108

and only decrypts the data if the KVD 104 is available for

requests from the memory stick, which acts as the DCD

102.

One feature of the system 100 is that during EK retrieval
operations users’ interactions are optional; that is, it is at an
application developer’s discretion whether to request user
interaction. Interaction may be useful for cases where few
EKs are fetched and the application 106 wants to ensure that
aperson who possesses both the DCD 102 and KVD 104 did,
in fact, request the encryption or decryption operation. Case 1
above is one example for such a case, i.e., the KEK is only
needed when a user is about to authenticate herself to one of
the applications 106. In order to ensure that the person who
tries to open the application 106, she might be asked to press
a button on the KVD 104 during the authentication process.

The design ofthe DCD resident component 114 is shown in
FIG. 2. In FIG. 2, the application 106 has access to various
exemplary encrypted data stores 108, E ., (Data,), E..,
(Data,), to Egg,(Data,), each of which is respectively
encrypted using EK,, EK,, to EK,, with each of the EKs
being respectively encrypted using KEK,, KEK,, to KEK,,.
The application 106 has direct access to KEK_IDs for each of
the KEKs. As discussed above, the application 106 accord-
ingly does not store the EKs in non-volatile memory, but does
store the KEK _IDs in its non-volatile memory. As used here-
inafter in this disclosure, KEK_ID, is the identifier for EK,,
and EK, is used to encrypt Data such that E,.(Data,) repre-
sents one of the encrypted data stores 108 and E..(EK,) is
the encrypted EK used to encrypt that data store 108.

The application 106 is communicative with the DCD resi-
dent component 114. The DCD resident component 114 com-
prises request and response managers 116a,6 (hereinafter
collectively “managers 116”), a framework manager 118 that
fetches EKs and KEKSs, a KVD connection manager 120 that
manages the connection between the DCD 102 and KVD 104
and that includes a watchdog timer 130, a link monitor 122,
volatile memory 124, and non-volatile memory 126 that
includes KVD pairing information 128.

The request manager 1164 manages decryption and
encryption requests from the application 106, while the
response manager 1165 sends decrypted EKs to the applica-
tion 106. Both of the managers 116 are communicative with
the framework manager 118. The framework manager 118 is
also communicative with the volatile memory 124, which
temporarily stores decrypted EKs, and with the KVD connec-
tion manager 120, which fetches KEKs from the KVD 104 to
decrypt encrypted EKs stored in the non-volatile memory
126. The KVD pairing information 128 stored in the non-
volatile memory 126 is responsible for establishing a long-
term link between the KVD 104 and the DCD 102; in par-
ticular, the service ID (“SID”) and the link key used to
reconnect the DCD 102 and the KVD 104 are stored as the
KVD pairing information 126. The link monitor 122 monitors
the wireless communication channel 110 between the KVD
104 and the DCD 102; if the channel 110 closes, the link
monitor 122 flushes the decrypted EKs from the volatile
memory 124 to prevent the data stores 108 from being

10

15

20

25

30

35

40

45

50

55

60

65

12

accessed when the KVD 104 and DCD 102 are not commu-
nicative with each other. In alternative embodiments such as
those depicted in FIGS. 8 to 12, the decision whether to flush
the decrypted EKs from memory may be made after consid-
ering additional factors.

When the application 106 wants to decrypt one of the data
stores 108, it sends a request to the DCD resident component
114 with an operational code (OpCode) representing
“decrypt” with the parameter being KEK_ID, to the request
manager 116a. The request manager 116a forwards this
request to the framework manager 118, which checks
whether E .. (EK,) has already been decrypted and EK,
remains resident in the volatile memory 124. If EK, is in the
volatile memory 124, the framework manager 118 retrieves
EK, and sends EK, back to the application 106 via the
response manager 1165. If EK, is not in the volatile memory
124, the framework manager 118 sends a request, containing
KEK_ID,, to the KVD connection manager 120 to connect to
the KVD 104 and to fetch KEK,;. KEK, is required to decrypt
EK,, which is stored in the non-volatile memory 126.

The KVD connection manager 120 checks to see whether
the KVD 104 is authenticated using the data stored as the
KVD pairing information 128; if it is not, the KVD 104 and
DCD 102 negotiate a new session key, as described in more
detail with respect to FIG. 3A below. Once the new session
key is established, the KVD connection manager 120 sends a
KEK request, comprising KEK_ID,, to the KVD 104 and
waits for a response. Once KEK, is received, the KVD con-
nection manager 120 returns it to the framework manager
118, which fetches E,.,.(EK,) from the non-volatile memory
126, decrypts it using the KEK,, saves EK, to the volatile
memory 124, and deletes KEK, from memory. The frame-
work manager 118 then sends EK, back to the application 106
via the response manager 1164.

While the foregoing describes a decryption operation, the
DCD 102 and KVD 104 perform analogous operations when
one of the applications 106 wants to encrypt data. Encryption
and decryption operations are discussed in more detail in
respect of FIGS. 4 and 5, below.

In the depicted embodiments the DCD 102 and KVD 104
communicate over the wireless communication channel 110
using the Bluetooth™ Low Energy (“BTLE”) standard in the
Bluetooth™ 4.0 specification. The BTLE standard satisfies
two criteria desirable in a communication standard: first, it is
energy efficient and requires relatively little maintenance
from a user; and second, it does not require any user action
(i.e. any active input from a user, such as pushing a button) for
communication to occur. The BTLE standard may be imple-
mented using a Texas Instruments™ CC2540 SoC, for
example, which is a very low power IC. Any RF communi-
cations protocol, and in particular any power-efficient RF
communications protocol, may be used to communicate
between the DCD 102 and KVD 104.

The pairing protocol used to pair the KVD 104 and DCD
102 is designed to facilitate confidentiality of communication
between the KVD 104 and DCD 102 and mutual authentica-
tion between the DCD 102 and KVD 104 during the pairing
process.

To mitigate against the risk of an eavesdrop attack (an
attack in which an adversary monitors the communications
between the DCD 102 and KVD 104) end to end encryption
of the communication between the DCD 102 and KVD 104 is
used. However, before the communication can begin, the
DCD 102 and KVD 104 establish a shared secret. Such a
secret can be established through the Diffie-Hellman (“DH”)
protocol; however, this protocol does not provide protection
against man-in-the-middle (“MITM”) attacks.

US 9,137,659 B2

13

The Bluetooth™ 4.0 core specification defines the Secure
Simple Pairing protocol (“SSPP”) that aims to mitigate both
of the aforementioned attacks, i.e., passive eavesdropping,
and MITM. In Bluetooth™ base rate (“BTBR”) there are four
association models, which are models of how two devices
such as the KVD 104 and DCD 102 establish a linked con-
nection over the wireless communication channel 110:

1. Numeric Comparison—in this association model both
devices negotiate a number and that number is shown on
the devices’ displays. The user is then asked to compare
these numbers and answer a yes/no question regarding
whether these numbers are the same.

2. Just Works—the devices connect to each other automati-
cally without requiring any user action. This association
model is often used when at least one of the devices has
very limited input/output resources, such as a device that
does not have a keyboard or a display. This model does not
provide protection against an MITM attack.

3. Out of Bound (OOB)—this model uses another, non-Blue-
tooth™, channel for mutual authentication. E.g., Near
Field Communication (“NFC”) could be used for the
mutual authentication process.

4. Passkey Entry—this model requires users to type the same
authentication secret on both devices. This association
model is only used when both devices have some input
capabilities (e.g., keyboard, video, audio, accelerometer,
etc.). The main difference between this model and OOB is
that OOB does not rely on users to generate the authenti-
cation secret or input it; instead the authentication secret
exchange is done automatically. In Passkey Entry users are
required to enter the authentication secret on at least one of
the devices.

Unfortunately, BTLE does not support all these association
models. In particular, it does not support the Numeric Com-
parison model, due to assumed limited display capabilities of
the BTLE devices. Furthermore, the Just Works and Passkey
Entry association models do not provide protection even
against a passive eavesdropper, because BTLE does not use
the DH protocol for session key establishment. The DCD 102
and KVD 104 do not adopt the Just Works association model
due to its insufficient security guarantees nor the basic speci-
fication and implementation of the Passkey Entry association
model, since it does not protect against an MITM attack.

To mitigate the eavesdropping and MITM attacks the KVD
104 and DCD 102 communicate using a pairing protocol that
allows for mutual authentication between the DCD 102 and
the KVD 104. In addition, this pairing protocol establishes a
strong secure session key (“S3K”) using the DH protocol.
FIG. 3 A depicts one embodiment of the pairing protocol.

In order to mitigate against an MITM attack during pairing
either the OOB or Passkey Entry association models are used
to generate the same weak shared secret key (“WS2K”) on
both the DCD 102 and KVD 104 prior to step 1 in FIG. 3A.
For the Passkey Entry model, a custom protocol, similar to the
implementation of SSPP for BT BDR/EDR, is used. Users
enter the same WS2K on both the DCD 102 and KVD 104 if
both the DCD 102 and KVD 104 can prompt for and accept
user input (e.g., when the DCD 102 and KVD 104 are tablets
or smartphones, users are presented with a prompt to enter
their WS2K on both devices). I[f the KVD 104 is a device with
poor input capabilities, alternative approaches for entering
the WS2K are adopted. In one approach, the DCD 102 pre-
sents instructions for a user which show the sequence of N
buttons clicks on the KVD 104. For a KVD 104 that has only
two buttons, the number of times one of the button is clicks
directly corresponds to the entropy of the WS2K.

20

35

40

45

50

55

14

In another approach the system 100 relies on accelerom-
eters within the DCD 102 and KVD 104. The user is asked to
put the two DCD 102 and KVD 104 together in one hand and
rotate them both randomly in four directions for a specified
period of time. This approach produces similar accelerometer
data in both of the DCD 102 and KVD 104, which is passed
to a WS2K derivation method in both of the DCD 102 and
KVD 104.

For the OOB association model, any of the following four
methods is used to generate the WS2K:

1. a Quick Response (“QR”) Code is generated on one of the
DVD 102 and KVD 104 and scanned on the other;

2. one of the DVD 102 and KVD 104 generates a vibration
pattern and the other of the DVD 102 and KVD 104 reads
it and decodes the WS2K from it;

3. NFC communication between the DVD 102 and KVD 104;
and

4. wired connection of both of the DVD 102 and KVD 104 to
aPC.

Overall, the pairing protocol comprises:

1. Strong mutual authentication (steps 1 to 3 of FIG. 3); and

2. S3K establishment (steps 4 to 7 of FIG. 3).

The main objective of strong mutual authentication is to
mitigate risk of an MITM attack. By authenticating the DVD
102 and KVD 104, strong mutual authentication helps ensure
that no one is eavesdropping on communications between the
DVD 102 and KVD 104 that the user is about to pair. Once the
WS2K is established, at step 1 the DCD 102 sends challenge
data R1 along with the message “I am the DTC” to the KVD
104. At step 2 the KVD 104 sends back to the DCD 102 the
challenge data R1, new challenge data R2, and the message “I
am the KVD”. Upon receiving this message the DCD 102
authenticates the KVD 104 and sends back to the KVD 104,
at step 3, the challenge data R2 and the message “I am the
DTC”. Upon receiving this message the KVD 104 authenti-
cates the DCD 102. At step 4 the KVD 104 sends to the DCD
102 its public key (KVDPubKey), its ECCID (NIST Elliptic
Curve ID), and new challenge data R3. The DCD 102
responds at step 5 by sending to the KVD 104 its public key
(DCDPubKey) and new challenge data R4. Each of the DCD
102 and KVD 104 then determine a new S3K using DCD-
PubKey and KVDPubKey according to the Elliptic Curve
Diffie-Helman (“ECDH”) protocol. Establishing an S3K is
done to mitigate the inherited weaknesses of user typed
authentication secrets. The ECDH protocol is used to estab-
lish the S3K because it is a better fit for resource constrained
devices, such as smartphones, tablets or SOCs. In steps 6 and
7 of FIG. 3A, the DCD 102 and KVD 104 respectively verify
the S3K generated between steps 5 and 6 by encrypting and
then decrypting challenge data R4 and R3. The messages
transmitted at steps 1 through 5 of FIG. 3A are encrypted
using the WS2K, while the messages transmitted at steps 6
and 7 are encrypted using the S3K.

The pairing may optionally be named to reduce the prob-
ability of name clashes in the Bluetooth™ network and to
increase the speed of discovery of and reconnection to the
KVD 104. The KVD 104, when unpaired, only knows two
constant UUIDs: the UUID of the system 100, and the UUID
of'the system 100 pairing characteristic. Once the KVD 104 is
paired, it still uses the UUID of the system 100 when it
advertises its presence, but it uses a randomly assigned value
as a pairing characteristic. The DCD 102, which assigns this
value during the pairing process, then knows which device it
needs to look for. These UUIDs are assumed to be public
information and accordingly are not encrypted during trans-
fer.

US 9,137,659 B2

15

FIG. 3B shows an exemplary request and response between
the DCD 102 and the KVD 104. At step 1, the DCD 102 sends
an encrypted RequestCode, which is a particular type of
OpCode, along with an encrypted payload and encrypted
challenge dataR1. The KVD 104 responds with the encrypted
R1 and an encrypted response ResponsePayload. The table in
FIG. 3B shows exemplary RequestCodes and payloads, sent
from the DCD 102 to the KVD 104, and ResponsePayloads
returned by the KVD 104.

Each of the EKs and KEKs periodically expire, for
example on a per session (between the DCD 102 and KVD
104) basis, after a certain amount of time, or after certain
events as shown in FIGS. 8 to 12, which reduces the risk that
a cloning attack can be successfully used to access the data on
the DCD 102.

Referring now to FIG. 4, here is shown another embodi-
ment of the DCD 102 and, in particular, the DCD resident
component 114 of the system 100. The DCD 102 of FIG. 4 is
similar to the DCD 102 of FIG. 2, with the exceptions that the
KVD connection manager 120 of FIG. 4 is shown with dif-
ferent functionality, the link monitor 122 has been incorpo-
rated into the connection manager 120, and the DCD resident
component 114 includes a DCD health agent 132 to interface
with a key vault system manager (“KVSM”) 134. The addi-
tional functionality shown in the connection manager 120
includes statements and instructions to cause the KVD con-
nection manager 120 to perform the actions depicted in FIG.
3A to pair the DCD 102 and KVD 104 and in FIG. 3B to
permit communication between the DCD 102 and KVD 104.

The connection manager 120 comprises a KVD health
agent 150, a link key manager 154 that includes KVD authen-
tication logic, a session key manager 156 that utilizes the
ECDH protocol, a KEK operation dispatcher 158, a wireless
channel manager 160, the link monitor 122, and a pairing
module 162 that performs pairing logic. The pairing logic 162
is communicative with the KVD pairing information 128
stored in the non-volatile memory 126.

The DCD health agent 132 comprises a backup/restore
agent 164 communicative with the framework manager 118;
a DCD system monitor agent 166 communicative with the
KVD health agent 150; a data wipe/fade manager 168 com-
municative with the framework manager 118; an intelligent
agent 172, comprising security policy and rules 170, commu-
nicative with the KVD connection manager 120, data wipe
and fade manager 168, and DCD system monitor agent 166;
and a KVSM connection manager 180, comprising a link
certificate manager 176 with KVSM authentication logic, a
session key manager 178 utilizing the ECDH protocol, and a
wireless channel manager 174, communicative with the data
wipe/fade manager 168, DCD system monitor agent 166, and
backup/restore agent 164. The KVSM connection manager
180 is also the component of the DCD 102 via which the DCD
102 communicates with the KVSM 134 via a network 148.
Those components of the DCD resident component 114 not
comprising part of the DCD health agent comprise part of a
DCD data encryption framework 131.

The various components of the DCD 102 operate as fol-
lows:

1. Applications 106. The applications 106 communicate with
the DCD data encryption framework 131 by sending
instructions to encrypt or decrypt data or to delete keys.
The applications 106 send messages to the request man-
ager 1164 that comprise an OpCode and message param-
eters. The applications 106 receive responses from the
response manager 1165 comprising an OpResult.

(a) To encrypt Data,, the applications 106 send the Encrypt

OpCode and KEK_ID, to the framework manager 118

15

25

35

40

45

55

16

via the request manager 116a. The applications 106
receive from the framework manager 118 via the
response manager 1165

(b) To decrypt Ez,(Data,), the applications 106 send the

Decrypt OpCode and KEK_1ID, to the framework man-

ager 118 via the request queue 1164 and receive EK,

from the framework manager 118 via the response man-

ager 1165. The applications 106 use EK to decrypt E .

(Data,) in the applications’ 106 volatile memory and do

not store EK, after decryption has been performed. In an

alternative embodiment (not depicted), the applications

106 send KEK_ID,, Egi.(Data,), and the Decrypt

OpCode to the framework manager 118, which decrypts

Ex.(Data,) and returns Data to the applications 106.

(c) To delete keys the applications 106 send the Delete

OpCode and KEK_ID, to the framework manager 118

viatherequest queue 1164. The framework manager 118

then deletes KEK, and EK,; from the volatile memory

124 and non-volatile memory 126. Even if Data remains

stored in the applications’ 106 non-volatile memory it

will not be cryptographically accessible. Optionally, the
applications 106 may delete Data to free non-volatile
memory.
2.Request manager 116a. The request manager 1164 receives
requests from the applications 106 and relays them to the
framework manager 118. The request manager 1164 is able
to prioritize requests from some of the applications 106.
3. Response manager 1165. The response manager 1165
receives responses from the framework manager 118 and
relays them to the applications 106.
4. Framework manager 118. The framework manager 118 is
responsible for the following:
(a) Encrypting. To encrypt, the framework manager 118

(1) receives, from one of the applications 106 via the
request manager 1164, an encryption request and a
number (k) identifying which of the applications 106
sent the request;

(i1) randomly generates EK;

(iii) randomly generates KEK,, which identifies EK;

(iv) receives from the KEK operation dispatcher 158
KEK_ID,, which is an integer that uniquely identifies
KEK, and, in turn, Data,;

(v) encrypts EK, using KEK, to create E(EK,);

(vi) stores KEK_ID, and E...(EK,) in the non-volatile
memory 126;

(vii) stores KEK_ID, and EK, in the volatile memory
124,

(viii) sends EK,, KEK_ID,, and k to the response man-
ager 1165, which sends EK, and KEK_ID, to the
application 106 that requested Data be encrypted; and

(ix) sends EK,, KEK_ID,, and k to the backup/restore
agent 164.

(b) Decrypting Ezx,(Data,). To decrypt E ., (Data,), the

framework manager 118

(i) receives KEK_ID, and k from one of the applications
106 via the request manager 116a;

(ii) attempts to retrieve EK, from the volatile memory
124 using KEK_ID,, and if successful forwards EK,
and k to the response manager 1165 to permit the
application 106 to decrypt E_..(Data,); and

(ii1) if EK, cannot be retrieved from the volatile memory
124, uses KEK_ID, to retrieve E ... (EK,) from the
non-volatile memory 126, stores KEK_ID, and EK, in
the volatile memory 124, and forwards EK, and k to
the response manager 1165 to permit the application
106 to decrypt Ex,(Data,).

US 9,137,659 B2

17

(c) Deleting Keys. To delete keys because of instructions to
do so from the data wipe/fade manager 168, the frame-
work manager 118
(1) receives KEK_ID, and instructions to delete keys

from the data wipe/fade manager 168;

(ii) deletes KEK_ID, and EK, from the volatile memory
124,

(iii) deletes KEK_ID, and Ej.+(EK,) from the non-
volatile memory 126;

(iv) sends a request to the KEK operation dispatcher 158
with KEK_ID, to delete KEK, from the KVD 104; and

(v) sends to the response manager 1165 k and KEK_ID,
to allow the response manager 1164 to instruct the
application 106 controlling Data to delete Data,, if
desired, to free space in the applications’ 106 non-
volatile memory.

(d) Sends and receives KEKs and KEK_IDs to and from
the KEK operation dispatcher 158.

(e) Communicates with the backup/restore agent 164. The
framework manager 118 sends backup and restore
requests to the backup/restore agent 164. To backup
KEK,, the framework manager 118 sends KEK,,
KEK _ID,, and k to the backup/restore agent 164. To
restore KEK,, a method such as that described below in
respect of FIG. 14 is performed.

. KVD Connection Manager 120. The KVD connection
manager 120 creates a secure connection to the KVD 104.
The KVD connection manager 120 comprises the follow-
ing modules:

(a) Link key manager 154. The link key manager 154
performs authentication logic as described above in
respect of steps 1 through 3 of FIG. 3A.

(b) Session key manager 156. The session key manager 156
generates the S3K using the ECDH protocol as
described above in respect of steps 4 through 7 of FIG.
3A.

(c) KEK operation dispatcher 158. The KEK operation
dispatcher 158 is responsible for communication
between the framework manager 118 and the KVD 104
once authentication is successful and the S3K is estab-
lished. The KEK operation dispatcher 158 can perform
the following operations:

(1) Store. The store operation allows KEK, to be stored in
the KVD 104. The KEK operation dispatcher 158
receives KEK, from the framework manager 118,
sends a store request along with KEK, to the KVD
104, receives KEK_ID, from the KVD 104, and
returns KEK _ID, to the framework manager 118. The
store operation corresponds to the StoreKey Request-
Code of FIG. 3B.

(i1) Fetch. The fetch operation allows KEK, to be
retrieved from the KVD 104. The KEK operation
dispatcher 158 receives KEK_ID, from the frame-
work manager 118, sends a fetch request along with
KEK_ID, to the KVD 104, receives KEK, from the
KVD 104, and returns KEK, to the framework man-
ager 118. The fetch operation corresponds to the
RetrieveKey RequestCode of FIG. 3B.

(iii) Delete. The delete operation allows KEK; to be
deleted from the KVD 104. The KEK operation dis-
patcher 158 receives KEK_ID, from the framework
manager 118, sends a delete request along with
KEK _ID, to the KVD 104, receives confirmation
from the KVD 104 that KEK, has been deleted, and
confirms to the framework manager 118 that deletion
has occurred. The delete operation corresponds to the
DeleteKey RequestCode of FIG. 3B.

10

15

20

25

30

35

40

45

50

55

60

65

18

(iv) Update. The update operation is performed during
key restoration as described below in respect of FIG.
14. The KEK operation dispatcher 158 receives a new
KEK, for KEK_ID,, sends an update request with
KEK, and KEK_ID; to the KVD 104, receives confir-
mation from the KVD 104 that the new KEK_ID, has
been associated with KEK,, and relays this confirma-
tion to the framework manager 118. The update
operation corresponds to the UpdateKey Request-
Code of FIG. 3B.

(d) Wireless channel manager 160. The wireless channel
manager 160 manages RF communication between the
DCD 102 and KVD 104.

(e) Pairing logic 162. The pairing logic comprises state-
ments and instructions to implement the pairing protocol
as described in respect of FIG. 3A, above.

(® Link monitor 122. The link monitor 122 monitors the
connection between the DCD and KVD 104. In one
embodiment, as soon as the connection is lost, as a safety
precaution the link monitor 122 flushes the volatile
memory 124 so that the EKs are no longer available for
decryption. Should EK, be subsequently required and
not available in the volatile memory 124 KEK, is fetched
from the KVD 104 to decrypt the E,..,(EK,) stored in
the non-volatile memory 126.

(g) KVD health agent 150. The KVD health agent 150
communicates with an analogous DCD health agent 151
comprising part of the KVD 104 to receive updates on
the KVD 104’s status, and sends these status updates to
the DCD system monitor agent 166. The KVD health
agent 150 also receives updates on the DCD 102°s health
from the intelligent agent 172 and relays these updates to
the DCD health agent 151 on the KVD 104. Health
updates comprise information such as the status S, of
eachofthe DCD 102 and KVD 104, as determined using
the exemplary methods of FIGS. 8 to 12.

6. DCD system monitor agent 166. The DCD system monitor

agent 166 gathers information about the current states of

the DCD 102 and KVD 104 by, for example:

(a) receiving information from the DCD 102’s sensors,
such as whether a WiF1i signal is available, current loca-
tion as determined via a GPS sensor, and the DCD 102’s
orientation as determined using a gyroscope or acceler-
ometer;

(b) receiving information from the KVSM 134 via the
KVSM connection manager 180 regarding, for example,
the health state of the KVD 104, the DCD 102, or both;

(c) receiving information from the KVD health agent 150
on the status of the KVD 104; and

(d) aggregating the information collected in subparagraphs
(a)-(c) and sending the aggregated information to the
intelligent agent 172 and the KVSM connection man-
ager 180 for more detailed analysis.

. Intelligent agent 172. The intelligent agent 172 analyzes

the health state of the DCD 102. The intelligent agent 172

(a) receives information from the DCD system monitor
agent 166;

(b) stores security policy and rules as the security policy
and rules 170;

(c) determines the current state of the DCD 102; and

(d) sends instructions to the wipe/fade manager 170 to wipe
or fade data based on the current state of the DCD 102.
If after time t, the DCD 102 remains in state S,, the
intelligent agent 172 instructs the wipe/fade manager
170 to delete the keys used to encrypt data having pri-
ority p; . . . p;- State S, is considered a safe state in which
data is stored indefinitely.

US 9,137,659 B2

19

Based on the security policy and rules 170, the intelligent
agent 172 assigns the encrypted data stored by the appli-
cations 106 a priority level selected from p,, P,, . . . p,,.
These priority levels are sent to the KVD 104 either
directly via the wireless connection 110 or indirectly via
the KVSM 134. Level p, represents the most confiden-
tial or sensitive data while level p,, represents the least
confidential or sensitive data. The security policy and
rules 170 may be loaded on to the DCD 102 in any one
of'a variety of suitable ways, such as by being pushed by
the applications 106, pushed by the KVSM 134, or cre-
ated by the intelligent agent 172 itself after monitoring
operation of the DCD 102.

The intelligent agent 172 has states S, S,, . . . S,, which
correspond respectively to priority levels p,, Ps, .. . p,,.
The intelligent agent 172 has access to input from the
DCD system monitor agent 166, the KVSM 134 and to
the security policy and rules 170 and from these deter-
mines whether to wipe the data from the DCD 102 to
prevent it from being surreptitiously accessed. The intel-
ligent agent 172 uses artificial intelligence or machine
learning methods to determine the health status of the
DCD 102. The intelligent agent 172 uses active learning
to interactively obtain data from the DCD system moni-
tor agent 166 to make decisions about the state of the
DCD 102. The intelligent agent 172 then uses any suit-
able classification method such as Bayesian networks,
Markov networks, decision trees, support vector
machines, or neural networks on the data that the DCD
system monitor agent 166 outputs to learn and periodi-
cally update the model used to determine the health
status of the DCD 102. Inference methods can be run on
these models to determine the probability of the DCD
102 being in different states.

8. Wipe/fade manager 170. The wipe/fade manager 170
instructs the framework manager 118 to wipe or fade keys
in response to instructions from the KVSM connection
manager 180 or the intelligent agent 172. Regardless of the
source of the instructions, the wipe/fade manager 170
receives a command to wipe/fade KEK_ID,, which itrelays
to the framework manager 118. The framework manager
118 can obtain EK, from either the volatile memory 124 or
by decrypting Ep..(EK,) after obtaining KEK, via the
KEK operation dispatcher 158, following which it can
instruct the applications 106 to delete Data,. The frame-
work manager 118 deletes KEK_ID, and EK, from the
volatile memory 124, deletes KEK_ID, and E .(EK,)
from the non-volatile memory 126, and instructs the appli-
cations 106 to delete Data,, as discussed above.

9. Backup/restore agent 164. The backup/restore agent 164 is
used to backup to or restore keys from cloud storage; that
is, to back up to or restore keys from the KVSM 134. To
backup keys, the backup/restore agent 164 receives a
backup request from the framework manager 118, which
comprises KEK,, KEK ID,, and k. The backup/restore
agent 164 then sends KEK,, KEK_1D,, and k to the KVSM
connection manager 180 for transmission to and storage in
the KVSM 134. To restore keys, the method described in
respect of FIG. 14, below, may be performed.

10. KVSM connection manager 180. The KVSM connection
manager 180 is responsible for securely communicating
with the KVSM 134. The KVSM connection manager 180
comprises the following modules:

(a) Link certificate manager 176. The link certificate man-
ager 176 performs authentication logic using an SSL.
certificate instead of the WS2K in order to authenticate

5

10

15

20

25

30

35

40

45

50

55

60

65

20
KVSM134. After the authentication is complete, the key
establishment logic is the same as between the KVD 104
and DCD 102.

(b) Session key manager 178. The session key manager 178
generates the S3K using the ECDH protocol as
described above in respect of steps 4 through 7 of FIG.
3A, except that instead of the DCD 102 and KVD 104
generating the S3K, the DCD 102 and KVSM 134 gen-
erate the S3K, respectively.

(c) Wireless channel manager 174. The wireless channel
manager 174 manages RF communication between the
DCD 102 and KVSM 134.

FIG. 5 shows an embodiment of the KVD 104 and, in
particular, a portion of the system 100 that is resident on the
KVD 104 (“KVD resident component 115”). The KVD resi-
dent component 115 comprises a KVD health agent 133,
which is analogous to the DCD health agent 132 of the DCD
resident component 114, and a KVD data encryption frame-
work 135, which is analogous to the DCD data encryption
framework 131 of the DCD resident component 114. The
KVD data encryption framework 135 comprises a KEK man-
ager 138, non-volatile memory 140 that stores KEKs and
DCD pairing information 129, a DCD connection manager
136 that is analogous to the KVD connection manager 135,
and a user interface 142. The KEK manager 138 is commu-
nicative with the non-volatile memory 140, the DCD connec-
tion manager 136, and with a backup/restore agent 165 and
data wipe/fade manager 169 that each comprises part of the
KVD health agent 133. The DCD connection manager 136
and user interface 142 are communicative with each other.
The user interface 142 comprises input/output interfaces such
as buttons, a display, lights, switches, an accelerometer, and a
gyroscope to allow users to provide input that may be used to
generate the WS2K as described above in respect of FIG. 3A.

The DCD connection manager 120 comprises a DCD
health agent 151, a link key manager 155 that includes DCD
authentication logic, a session key manager 157 that utilizes
the ECDH protocol, a KEK operation dispatcher 159, a wire-
less channel manager 161, and a pairing module 163 that
performs pairing logic. The pairing module 163 is communi-
cative with the DCD pairing information 129 stored in the
non-volatile memory 140. The KVD health agent 150, link
key manager 154, session key manager 156, KEK operation
dispatcher 158, wireless channel manager 160, and pairing
module 162 are analogous in functionality to the DCD health
agent 151, the link key manager 155, the session key manager
157, the KEK operation dispatcher 159, the wireless channel
manager 161, and the pairing module 163, respectively, on the
DCD 102.

The KVD health agent 133 comprises a backup/restore
agent 165 communicative with the KEK manager 138; a
KVD system monitor agent 167 communicative with the
DCD health manager 151; a data wipe and fade manager 169
communicative with the KEK manager 138; an intelligent
agent 173, comprising security policy and rules 171, commu-
nicative with the DCD connection manager 136, data wipe/
fade manager 169, and KVD system monitor agent 167; and
a KVSM connection manager 181, comprising a link certifi-
cate manager 177 with KVSM authentication logic, a session
key manager 179 utilizing the ECDH protocol, and a wireless
channel manager 175, communicative with the data wipe and
fade manager 169, KVD system monitor agent 167, and
backup/restore agent 165. The KVSM connection manager
181 is also the component of the KVD 104 via which the
KVD 104 communicates with the KVSM 134 via the network
148.

US 9,137,659 B2

21

The various components of the KVD 104 operate as fol-
lows:
1. KEK manager 138. The KEK manager 138 is responsible
for the following:

(a) Responding to requests from the KEK operation dis-
patcher 159. As discussed above in respect of the KEK
operation dispatcher 158 for the KVD connection man-
ager 120, the KEK operation dispatchers 158,159 are
used to store, fetch, delete, and update KEKSs into and
from the non-volatile memory 140. In the KVD 104,
these operations are performed via the KEK manager
138 analogous to how they are performed via the frame-
work manager 118 in the DCD 102.

(b) Deleting KEK,. To delete KEK, because of instructions
to do so from the data wipe/fade manager 169, the KEK
manager 138
(1) receives KEK 1D, and instructions to delete KEK,;
(i) deletes KEK_ID, and KEK, from the non-volatile

memory 140; and

(iii) sends a request to the KEK operation dispatcher 159
to delete KEK_ID, from the DCD 102.

(c) Communicates with the backup/restore agent 164. The
KEK manager 138 sends backup and restore requests to
the backup/restore agent 165. To backup keys, the KEK
manager 138 sends KFEK,, KEK_ID,, and k to the
backup/restore agent 164. To restore KEK,, a method as
described below inrespect of FIG. 14 may be performed.

2. DCD Connection Manager 136. The DCD connection

manager 136 creates a secure connection to the DCD 102.

The DCD connection manager 136 comprises the follow-

ing modules:

(a) Link key manager 155. The link key manager 155
performs authentication logic as described above in
respect of steps 1 through 3 of FIG. 3A.

(b) Sessionkey manager 157. The session key manager 157
generates the S3K using the ECDH protocol as
described above in respect of steps 4 through 7 of FIG.
3A.

(c) KEK operation dispatcher 159. The KEK operation
dispatcher 159 is responsible for communication
between the KEK manager 138 and the DCD 102 once
the authentication is successful and the S3K is estab-
lished. The KEK operation dispatcher 159 can perform
the following operations:

(1) Store. The store operation allows KEK,, received
from the DCD 102, to be stored in the non-volatile
memory 140. The KEK operation dispatcher 159
receives a store request and KEK, from the DCD 102,
and returns KEK_ID,; to the DCD 102. The KEK
operation dispatcher 159 obtains KEK_ID, using the
KEK manager 138. The store operation corresponds
to the StoreKey RequestCode in FIG. 3B.

(i1) Fetch. The fetch operation allows KEK, to be
retrieved from the non-volatile memory 140. The
KEK operation dispatcher 159 receives KEK_ID, and
a fetch request from the DCD 102, fetches KEK, from
the non-volatile memory 140, and returns KEK, to the
DCD 102. The fetch operation corresponds to the
RetrieveKey RequestCode in FIG. 3B.

(iii) Delete. The delete operation allows KEK, to be
deleted from the non-volatile memory 140. The KEK
operation dispatcher 159 receives KEK_ID, and a
delete request from the DCD 102, instructs the KEK
manager 138 to delete KEK, from the non-volatile
memory 140, receives confirmation from the KEK
manager 138 that KEK, has been deleted, and con-

10

20

25

22

firms to the DCD 102 that deletion has occurred. The
delete operation corresponds to the DeleteKey
RequestCode in FIG. 3B.

(iv) Update. The update operation is performed during
key restoration. The KEK operation dispatcher 159
receives a new KEK, for a KEK_ID from the DCD
102, sends an update request with KEK, and KEK_ID
to the KEK manager 138, receives confirmation from
the KEK manager 138 that the new KEK_ID has been
associated with KEK,, and relays this confirmation to
the DCD 102. The update operation corresponds to
the UpdateKey RequestCode in FIG. 3B.

(d) Wireless channel manager 161. The wireless channel
manager 161 manages RF communication between the
DCD 102 and KVD 104.

(e) Pairing logic 163. The pairing logic comprises state-
ments and instructions to implement the pairing protocol
as described in respect of FIG. 3A, above.

() DCD health agent 151. The DCD health agent 151
communicates with the analogous KVD health agent
150 comprising part of the DCD 102 to receive updates
on the DCD 102’s status, and sends these status updates
to the KVD system monitor agent 167. The DCD health
agent 151 also receives updates onthe KVD 104°s health
from the intelligent agent 173 and relays these updates to
the KVD health agent 150 on the DCD 102. Health
updates comprise information such as the status S, of
eachofthe DCD 102 and KVD 104, as determined using
the exemplary methods of FIGS. 8 to 12.

30 3.KVD system monitor agent 167. The KVD system monitor

35

40

45

50

55

60

65

agent 167 gathers information about the current states of

the DCD 102 and KVD 104 by, for example:

(a) receiving information from the KVD 104’s sensors,
such as whether a WiF1i signal is available, current loca-
tion as determined via a GPS sensor, and the KVD 104’s
orientation as determined using a gyroscope or acceler-
ometer;

(b) receiving information from the KVSM 134 via the
KVSM connection manager 181 regarding, for example,
the health state of the KVD 104, the DCD 102, or both;

(c) receiving information from the DCD health agent 151
on the status of the DCD 102;

(d) aggregating the information collected in subparagraphs
(a)-(c) and sending the aggregated information to the
intelligent agent 173 and the KVSM connection man-
ager 181 for more detailed analysis.

. Intelligent agent 173. The intelligent agent 173 analyzes

the health state of the KVD 104. The intelligent agent

(a) receives information from the KVD system monitor
agent 167;

(b) stores security policy and rules as the security policy
and rules 171;

(c) determines the current state of the KVD 104; and

(d) sends instructions to the wipe/fade manager 171 to wipe
or fade KEKSs based on the current state of the KVD 104.
If after time t, the KVD 104 remains in state S, the
intelligent agent 173 instructs the wipe/fade manager
171 to delete the KEKs having priority p, . . . p;. State S,
is considered a safe state in which data is stored indefi-
nitely.

Based on the security policy and rules 171, the intelligent
agent 173 assigns the KEKs stored in the non-volatile
memory 140 a priority level selected fromp,, P,, ... p,,
These priority levels are sent to the DCD 102 either
directly via the wireless connection 110 or indirectly via
the KVSM 134. Level p, represents the most confiden-
tial or sensitive data while level p,, represents the least

US 9,137,659 B2

23

confidential or sensitive data. The security policy and
rules 171 may be loaded on to the KVD 104 in any one
of'a variety of suitable ways, such as by being pushed by
the KVSM 134 or created by the intelligent agent 173
after monitoring operation of the KVD 104.

The intelligent agent 173 has states S;, S,, . . . S,,, which
correspond respectively to priority levels p, ps, - . . D,
The intelligent agent 173 has access to input from the
KVD system monitor agent 167 and the KVSM 134 and
to the security policy and rules 171 and from these
determines whether to wipe the KEKs from the KVD
104 to prevent them from being surreptitiously accessed.
The intelligent agent 173 uses artificial intelligence or
machine learning methods to determine the health status
of the KVD 104. The intelligent agent 173 uses active
learning to interactively obtain data from the KVD sys-
tem monitor agent 167 to make decisions about the state
of'the KVD 104. The intelligent agent 173 then uses any
suitable classification method such as Bayesian net-
works, Markov networks, decision trees, support vector
machines, or neural networks on the data that the KVD
system monitor agent 167 outputs to learn and periodi-
cally update the model used to determine the health
status of the KVD 104. Inference methods can be run on
these models to determine the probability of the KVD
104 being in different states.

5. Wipe/fade manager 171. The wipe/fade manager 171
instructs the KEK manager 138 to delete KEKs in response
to instructions from the KVSM connection manager 181 or
the intelligent agent 173. Regardless of the source of the
instructions, the wipe/fade manager 171 receives a com-
mand to wipe/fade KEK_ID,, which it relays to the KEK
manager 138.

6. Backup/restore agent 165. The backup/restore agent 165 is
used to backup to or restore keys from cloud storage; that
is, to back up to or restore keys from the KVSM 134. To
backup keys, the backup/restore agent 165 receives a
backup request from the KEK manager 138, which com-
prises KEK,, KEK_ID,, and k. The backup/restore agent
165 then sends KEK,, KEK_ID,, and k to the KVSM con-
nection manager 181 for transmission to and storage in the
KVSM 134. To restore keys, an exemplary method such as
that described below in respect of FIG. 14 is performed.

7. KVSM connection manager 181. The KVSM connection
manager 181 is responsible for securely communicating
with the KVSM 134. The KVSM connection manager
comprises the following modules:

(a) Link certificate manager 177. The link certificate man-
ager 177 performs authentication logic as described
above in respect of steps 1 through 3 of FIG. 3 A, except
that instead of authenticating the DCD 102 and KVD
104, the link certificate manager 177 authenticates the
KVD 104 and KVSM 134, respectively.

(b) Sessionkey manager 179. The session key manager 179
generates the S3K using the ECDH protocol as
described above in respect of steps 4 through 7 of FIG.
3A, except that instead of the DCD 102 and KVD 104
generating the S3K, the KVD 104 and KVSM 134 gen-
erate the S3K, respectively.

(c) Wireless channel manager 175. The wireless channel
manager 175 manages RF communication between the
KVD 104 and KVSM 134.

Referring now to FIG. 6, there is shown a block diagram of
the KVSM 134, according to one embodiment. The KVSM
134 comprises an intelligent agent 182, a DCD connection
manager 184, a KVD connection manager, and a backup/
restore manager 188 that itself comprises storage 190 such as

10

15

20

25

30

35

40

45

50

55

60

65

24

a non-transitory computer readable medium. Each of these

four modules is communicative with a system administration

unit 192. Each of the backup/restore manager 188 and the
intelligent agent 182 is also communicative with the DCD
and KVD connection managers 184,186. The DCD connec-

tion manager 184 is also communicative with the DCD 102

while the KVD connection manager 186 is also communica-

tive with the KVD 104 via the network 148.

The DCD connection manager 184 is responsible for
securely and wirelessly communicating with the DCD 102,
while the KVD connection manager 186 is responsible for
securely and wirelessly communicating with the KVD 104.
The DCD and KVD connection managers 184,186 may com-
municate using any suitable method for communicating
between a mobile device, such as the DCD 102 and KVD 104,
and a web service. The backup/restore manager 188 accepts
KEKs from the DCD 102, the KVD 104, or both and backs
them up to the storage 190, and similarly is able to push KEKs
to the DCD 102, KVD 104, or both. An administrator, via the
system administration unit 192, can also push data such as
documents to one or both of the DCD 102 and KVD 104 via
the backup/restore manager 188. The intelligent agent 182
receives status reports from the DCD 102 and the KVD 104
on, for example, their current state S,.

The KVSM 134 performs the following functions:

1. the backup/restore manager 188 backs up and restores
KEKSs from the DCD 102 or KVD 104,

2. relay commands, which may originate from the system
administration unit 192, such as to wipe all or some of the
KEKs stored on the DCD 102, KVD 104, or both;

3. relay commands, which may originate from the system
administration unit 192, to modify the status of the DCD
102, KVD 104, or both, which may be done when the
KVSM 134 learns the DCD 102, KVD 104 or both have
been compromised;

4. push data, such as documents, to the DCD 102, which
optionally originate from the system administration unit
192;

5. allow the system administrator to communicate with the
DCD 102 and KVD 104 via their connection managers
184,186;

6. allow the DCD 102 and KVD 104 to communicate with
each other via the KVSM 134 when the wireless connec-
tion 110 is unavailable (e.g.: when the DCD 102 and KVD
104 are too far apart to communicate using the wireless
connection 110);

7. receive and analyze reports from the KVD and DCD health
agents 150,151 using the KVSM 134’s intelligent agent
analyzer 182; and

8. request updates on the status of one or both of the DCD 102
and KVD 104.

To delete data, EKs, or KEK_IDs from one or both of the
DCD 102 and KVD 104, the intelligent agent 182 on the
KVSM 134 may send wipe commands to one or both of the
DCD 102 and KVD 104. Alternatively, the intelligent agent
172 on the DCD 102 may independently determine, from the
status of the DCD 102, that it should attend to wiping all data,
EKs, and KEK_IDs from the DCD 102. Additionally or alter-
natively, the intelligent agent 173 on the KVD 103 may inde-
pendently determine, from the status of the KVD 103, that it
should attend to wiping all KEKs and KEK_IDs from the
KVD 104. For example, in one embodiment if the DCD 102
is unable to communicate with the KVSM 134 and the intel-
ligent agent 172 on the DCD 102 determines that the DCD
102 has been compromised, the intelligent agent 172 instructs
the framework manager 118 and KVD connection manager
120 to delete each EK and Ep.(EK). Similarly, in one

US 9,137,659 B2

25

embodiment if the KVD 104 is unable to communicate with
the KVSM 134 and the intelligent agent 173 on the KVD 102
determines that the KVD 104 has been compromised, the
intelligent agent 173 instructs the KEK manager 134 to delete
all KEKs and KEK_IDs. If the DCD 102 and KVD 104 are
able to communicate with the KVSM 134, then in one exem-
plary embodiment the DCD 102 and KVD 104 only wipe
information in response to an instruction from the KVSM
134. Further examples of operation are described below in
respect of FIGS. 8 to 12.

Ineach of FIGS. 8 to 12, the system 100 has three states S,
S,, and S, and data having priority p, and p,. In state S,, t, is
set to 0 seconds, while in state S, t, is set to 0 seconds; that is,
all data having priority p, are immediately deleted when the
system 100 is placed in state S, and all data having priority p,
and p, areimmediately deleted when the system 100 is placed
in state S,. In state S, the system 100 retains all data indefi-
nitely.

Referring now to FIG. 8, there is shown a method 800 that
the KVD 104 performs when determining its own status,
according to one embodiment. The KVD 104 begins at block
802 and proceeds to block 804 where the wireless channel
manager 175 determines whether wireless communication
via radio frequency (e.g. such as by using cellular towers) is
possible with the KVSM 134. If no communication with the
KVSM 134 is possible, the KVD 104 proceeds to block 826
where the KVD system monitor agent 167 attempts to deter-
mine the KVD 104’s location using, for example, a GPS
receiver or WiF1i receiver. If the KVD system monitor agent
167 can successfully locate the KVD 104, the KVD 104
proceeds to block 828 where the intelligent agent 173 deter-
mines whether the KVD 104 is roaming. In this embodiment,
the security policy and rules 171 define a home jurisdiction
(e.g.: San Francisco Bay Area) for the KVD 104. When the
KVD 104 is within the home jurisdiction the intelligent agent
173 classifies it as not roaming and proceeds to block 830. At
block 830, the intelligent agent 173 determines whether the
KVD 104 is not only in the home jurisdiction, but is in what
is considered a safe environment. For example, if the home
jurisdiction is the San Francisco Bay Area, the safe environ-
ment may be a particular office complex in San Francisco
proper. If the intelligent agent 173 determines that the KVD
104 is in the safe environment, then it proceeds to block 832
and sets the KVD 104°s status to S,. If the intelligent agent
173 determines that the KVD 104 is outside the safe environ-
ment or is roaming, the KVD 104 proceeds to block 834. At
block 834 the intelligent agent 173 determines whether the
KVD 104 has communicated with the DCD 102 within the
last T1 hours and if the communication did not indicate that
the KVD 104 had been compromised. If yes, the intelligent
agent 173 proceeds to block 832 and sets the KVD 104°s
status to S,,. If no, the intelligent agent 173 proceeds to block
836 and determines whether the KVD 104 has communicated
with the DCD 102 within the last T2 hours, where T2>T1. If
yes, the intelligent agent 173 proceeds to block 838 and sets
the KVD 104’s status to S,. If no, the intelligent agent 173
proceeds to block 840 and sets the KVD 104’s status to S,.

If the KVD 104 can communicate with the KVSM 134,
then instead of proceeding to block 826 from block 804 the
KVD 104 proceeds to block 806. At block 806, the KVSM
connection manager 181 queries the KVSM 134 to determine
whether the KVSM 134 has determined that the KVD 104 is
in danger. For example, the KVD 104’s owner may have
reported that the KVD 104 has been stolen, which would
result in the KVSM 134 telling the KVSM connection man-
ager 181 that the KVD 104 is in danger. If the KVD 104 is in
danger, the intelligent agent 173 proceeds to block 808 and

10

25

30

35

40

45

50

55

60

65

26

sets the KVD 104°s status to S,. If the KVD 104 is not in
danger, the KVD 104 proceeds to block 810 and attempts, via
the DCD connection manager 136, to communicate with the
DCD 102 and confirm its safety. If communication is pos-
sible, the intelligent agent 173 proceeds to block 812 and sets
the KVD 104’s status to S,,. If communication is not possible,
the KVD 104 proceeds to block 814 and asks the KVSM 134
whether it can locate the DCD 102. If the KVSM 134 cannot
locate the DCD 102, the KVD 104 proceeds to block 834
where it determines whether it has communicated with the
DCD 102 within the last T1 hours. If yes, the KVD 104
proceeds to block 832 and its status is setto S,,. If no, the KVD
104 proceeds to block 836 where it determines whether it has
communicated with the DCD 102 within the last T2 hours,
where T2>T1. Ifyes, the KVD 104 proceeds to block 832 and
sets its status to S,. If no, the KVD 104 proceeds to block 836
and determines whether it has communicated with the DCD
102 within the last T2 hours, where T2>T1. If yes, the KVD
proceeds to block 838 and sets its status to S, . If no, the KVD
104 proceeds to block 840 and sets its status to S,.

Referring now to FIG. 9, there is shown a method 900 that
the KVD 104 performs when determining its own status,
according to another embodiment. The KVD 104 performs
the method 900 of FIG. 9 when the DCD 102 requests one of
the KEKSs.

The KVD 104 begins performing the method 900 at block
902 and proceeds to block 904 where the session key manager
157 on the KVD 104 determines whether the S3K the DCD
102 is valid. If the S3K is not valid, the KVD 104 proceeds to
block 906 where the session key manager 157 determines
whether the DCD 102 is using a previously negotiated S3K. If
no, then the intelligent agent 173 on the DCD 102 determines
that there is a possibility that an adversary is attempting to
surreptitiously gain access to the KEKs stored on the KVD
104 at block 908 and sets the status of the KVD 104 to S, at
block 910. If the DCD 102 is attempting to communicate
using a previously negotiated S3K, then at block 912 the
intelligent agent 173 determines that an adversary may be
attempting to surreptitiously gain access to the KEKs using a
cloned S3K, or that the S3Ks being used by the DCD 102 and
KVD 104 are not synchronized. In this case, the intelligent
agent 173 sets the status of the KVD 104 to S, at block 914.

If the DCD 102 is attempting to communicate with a valid
S3K, the KVD 104 proceeds from block 904 to block 916
where the session key manager 157 negotiates a new S3K
with the DCD 102. The session key manager 157 determines
whether negotiation of the new S3K is successful at block
918. If yes, the KVD 104 proceeds to block 922 and the
intelligent agent 173 sets the status of the KVD 104 to S3. If
not, at block 920 the session key manager 157 allows com-
munication to proceed with the S3K examined at block 904,
but records the inability to negotiate a new S3K for future
reference. The KVD 104 subsequently proceeds to block 922
where the intelligent agent 173 sets the KVD 104’s status to
So-
Referring now to FIG. 10, there is shown a method 1000
repeatedly performed by the KVD 104 to determine its own
status regardless of whether the DCD 102 is actively request-
ing KEKSs. The method 1002 begins at block 1002, following
which the KVD 104 proceeds to block 1004 where the intel-
ligent agent 173 determines whether time T has passed since
it last connected to the DCD 102 and negotiated a new S3K.
Iftime T has not passed, the KVD 104 proceeds to block 1006
where the intelligent agent 173 sets the KVD 104’s status to
S, and the session key manager 157 negotiates a new S3K
with the DCD 102. In the method 1000 of FIG. 10, it is
assumed that any attempt made by the DCD 102 to negotiate

US 9,137,659 B2

27

a new S3K is successful; in alternative embodiments (not
shown), however, the method 1000 may be modified to take
into account unsuccessful S3K negotiations. After a new S3K
is negotiated the KVD 104 returns to block 1004.

If the KVD 104 is unable to contact the DCD 102 at block
1004 for any reason (e.g.: the KVD 104 may have been moved
beyond the range of the wireless connection 110), the KVD
104 proceeds to block 1008 where the KVSM connection
manager 181 queries the KVSM 134 to determine if the DCD
102 has reported missing. If no, the KVD 104 proceeds to
block 1010 where the data wipe and fade manager 169 is
instructed to delete KEKs based on their priority level, the
status of the KVD 104, and elapsed time. After the data wipe
and fade manager 169 is instructed the KVD 104 returns to
block 1004. If, however, the DCD 102 has been reported
missing to the KVSM 134, then the KVD 104 proceeds from
block 1008 to block 1012 where all the KEKs are immedi-
ately deleted and the status of the KVD 104 is set to S,.

Referring now to FIGS. 11A and 11B, there is shown a
method 1100 that the DCD 102 applies when determining its
status, according to another embodiment. The DCD 102
begins performing the method 1100 at block 1101 and pro-
ceeds to block 1102 where the wireless channel manager 160
in the KVD connection manager 120 determines whether a
radio frequency is available to communicate with the KVSM
134. If communication is possible, the DCD 102 proceeds to
block 1103 where it determines whether the KVSM 134
reports that the DCD 102 is currently in danger. If yes, the
DCD 102 proceeds to block 1144 and the intelligent agent
172 sets the DCD 102’s status to S,. If not, or if communica-
tion with the KVSM 134 is not possible, the DCD 102 pro-
ceeds to block 1104 where the wireless channel manager 160
in the KVD connection manager 120 determines whether the
KVD 104 is within range of the wireless communication
channel 110. If no, the DCD 102 proceeds to block 1106
where the intelligent agent 172 determines whether it needs to
access data in the form of a KEK from the KVD 104. If no, the
DCD 102 returns to block 1104. If yes, the DCD 102 proceeds
to block 1108 where it determines whether it has already tried
multiple times to contact the KVD 104. If no, the DCD 102
returns to block 1104. If yes, the DCD 102 proceeds to block
1110 where the wireless channel manager 174 in the KVSM
connection manager 180 determines whether a wireless sig-
nal is available to communicate with the KVSM 134. If no,
the KVD connection manager tries using honey pot methods
to obtain this wireless signal to, for example, trick the adver-
sary into turning on the wireless signal (e.g. by tricking the
adversary into thinking he has access to the operator’s bank
account). At block 1114 the intelligent agent 172 determines
whether the wireless connection manager 174 was able to
establish contact with the KVSM 134. Ifyes, it reports the fact
that it has tried and failed multiple times to obtain the KEK
from the KVD 104 and proceeds to block 1118 where it sets
the DCD 102’s status to S,. If no, the KVD 104 proceeds
directly to block 1118 from block 1114. If at block 1110 the
wireless channel manager 160 is able to obtain signal, the
DCD 102 similarly reports its failure to obtain data from the
KVD 104 to the KVSM 134 at block 1120 and proceeds to
block 1122 where the DCD 102’s status is setto S;.

If at block 1104 the wireless channel manager 160 deter-
mines the KVD 104 and DCD 102 are within range of each
other, the DCD 102 proceeds to block 1124 where the frame-
work manager 118 determines whether it needs to access data
in the form of a KEK from the KVD 104. If no, the DCD 102
returns to block 1104. If yes, the DCD 102 proceeds to block
1126 where the session key manager 156 requests a new S3K
along with a KEK from the KVD 104. The session key man-

5

10

15

20

25

30

35

40

45

50

55

60

28

ager 156 determines whether the S3K the KVD 104 returns is
valid at block 1128. If not, the intelligent agent 172 concludes
at block 1130 that a possible attack using a clone of an S3K is
taking place, and uses the wireless channel manager 174 to
determine at block 1132 if the KVSM connection manager
180 can communicate with the KVSM 134. If yes, the KVSM
connection manager 180 reports the suspicious activity to the
KVSM 134 at block 1134 and the DCD 102 proceeds to block
1122 where its status is set to S, . If the KVSM 134 is unable
to communicate with the KVSM connection manager 180,
the DCD 102 proceeds directly to block 1122 from block
1132.

Ifthe session key manager 156 determines that the S3K the
KVD 104 returns is valid at block 1128, it proceeds to block
1136 where it negotiates a new S3K. It determines at block
1138 whether this negotiation is successtul. If yes, the DCD
102 proceeds directly to block 1142 where its status is set to
So. If not, the session key manager 156 uses the S3K consid-
ered at block 1128, stores the fact that a new S3K has notbeen
obtained, and then proceeds to block 1142.

Referring now to FIG. 12, there is shown a method 1200
that the KVSM 134 applies when determining the status of
one or both of the DCD 102 and KVD 104, according to
another embodiment. The KVSM 134 begins performing the
method at block 1202 and the KVSM 134°s intelligent agent
182 performs one of four tasks: it receives a report on the
status of the KVD 104 from the DCD 102 (block 1226), it
receives a request from the DCD 102 about the status of the
KVD 104 (block 1224), it receives a request from the KVD
104 about the status of the DCD 102 (block 1204), or it
receives a report on the status of the DCD 102 from the KVD
104 (block 1206). If the intelligent agent 182 receives a report
from the DCD 102 on the KVD 104 at block 1226, it proceeds
to block 1228 where it determines whether the report
included information on the status of the KVD 104 changing.
If the status of the KVD 104 hasn’t changed the intelligent
agent 182 proceeds to block 1210 where it evaluates the status
of the KVD 104 based on the information contained in the
DCD 102’5 report. For example, the DCD 102’s report may
include information that the KVD 104 is now located 100
miles away from a pre-determined safe environment and that
communication with the KVD 104 has been interrupted sev-
eral times. Based on this information, the intelligent agent
182 at block 1210 may decide to alter the status of the KVD
104; for example, if the DCD 102’s report contained suspi-
cious activity, it may set the status ofthe K<VD 104 to S,. Once
the intelligent agent 182 determines the status of the KVD
104, it proceeds to block 1230 where the KVSM 134 stores
the status of the KVD 104, and then to block 1232 where it
pushes this status to the DCD 102.

The intelligent agent 182 performs an analogous process if
it receives a report from the KVD 104 on the DCD 102 at
block 1206. It proceeds to block 1208 where it determines
whether the report included information on the status of the
DCD 102 changing. If the status of the DCD 102 hasn’t
changed the intelligent agent 182 proceeds to block 1210
where it evaluates the status of the DCD 102 based on the
information contained in the KVD 104°s report. For example,
the KVD 104°s report may include information that the DCD
102 is now located 100 miles away from a pre-determined
safe environment and that communication with the DCD 102
has been interrupted several times. Based on this information,
the intelligent agent 182 at block 1210 may decide to alter the
status of the DCD 102; for example, if the KVD 104’s report
contained suspicious activity, it may set the status of the DCD
102 to S,. Once the intelligent agent 182 determines the status
of'the DCD 102, it proceeds to block 1212 where the KVSM

US 9,137,659 B2

29
134 stores the status of the DCD 102, and then to block 1214
where it pushes this status to the KVD 104.

If'the intelligent agent 182 receives arequest from the DCD
102 regarding the KVD 104’s status at block 1224, the intel-
ligent agent 182 proceeds directly to block 1232 where the
KVSM 134 pushes to the DCD 102 the current status of the
KVD 104 that the KVSM 134 has stored. Analogously, if the
intelligent agent 182 receives a request from the KVD 104
regarding the DCD 102’s status at block 1204, the intelligent
agent 182 proceeds directly to block 1214 where the KVSM
134 pushes to the KVD 104 the current status of the DCD 102
that the KVSM 134 has stored.

In an exemplary situation when the DCD 102 is requesting
a KEK from the KVD resident component 115 because the
DCD wants to decrypt an EK, the DCD 102 and KVD 104
first authenticate each other and negotiate a session key, as
shown in FIGS. 3 and 4. Once the devices 102,104 establish
a secure session, the DCD connection manager 136 relays the
DCD 102’s request to the KEK manager 138, which retrieves
the corresponding KEK from the non-volatile memory 140
and returns it to the DCD connection manager 136. The DCD
connection manager 136 then relays the retrieved KEK to the
KVD connection manager 120 of the DCD resident portion
114. As in the DCD resident portion, the non-volatile memory
140 of the KVD resident portion 115 also stores DCD pairing
information.

FIG. 13 shows another exemplary embodiment of the sys-
tem 100. As with the embodiment of FIG. 1, the system 100 of
FIG. 13 includes the DCD 102 and KVD 104, which com-
municate via the wireless communication channel 110 using,
for example, the BTLE protocol or a modified version thereof
to permit session key establishment. One of the DCDs 102 in
FIG. 13 is a tablet, which communicates with one of the
KVDs 104, which is a smartphone. More generally, the DCD
102 may be any computing device comprising a controller
144a (“DCD controller 1444”) communicative with a non-
transitory computer readable medium 1464 having encoded
thereon statements and instructions to cause the controller
144a to perform the functionality described in any of the
embodiments of the DCD 102 described herein. For example,
the DCD 102 may be a memory stick that includes the con-
troller 144a and computer readable medium 1445 and that
communicates using the BTLE protocol. Similarly, the KVD
104 may be any computing device comprising a controller
1445 (“KVD controller 1445””) communicative with a non-
transitory computer readable medium 1465 having encoded
thereon statements and instructions to cause the controller
1445 to perform the functionality described in any of the
embodiments of the KVD 104 described herein. An exem-
plary controller is the Texas Instruments™ CC2540 system
on chip based on its 8051 microcontroller.

As in FIG. 1, the DCD 102 and KVD 104 of FIG. 13 are
communicative via the network 148 with the KVSM 134. The
KVSM 134 may be any computing device comprising a con-
troller 144¢ (“KVSM controller 144¢”) communicative with
a non-transitory computer readable medium 146c¢ having
encoded thereon statements and instructions to cause the
controller 144c¢ to perform the functionality described in any
ofthe embodiments of the KVSM 134 described herein, such
as a cloud-based server.

All the memory resident on the DCD 102 is referred to as
the “DCD memory”, all the memory resident onthe KVD 104
is referred to as the “KVD memory”, and all the memory
resident on the KVSM 134 is referred to as the “KVSM
memory”. For example, the DCD memory includes all vola-
tile and non-volatile memory resident on the DCD 102, such
as the volatile memory 124, the non-volatile memory 126,

10

15

20

25

30

35

40

45

50

55

60

65

30

and the computer readable medium 146a, whether accessible
by the applications 106, data encryption framework 131,
both, or neither. Similarly, the KVD memory includes all
volatile and non-volatile memory resident on the KVD 104,
such as the non-volatile memory 140 and the computer-read-
able medium 14654. Similarly, the KVSM memory includes
all volatile and non-volatile memory resident on the KVSM
134, such as the computer readable medium 146c¢.

While FIG. 13 shows both the DCD 102 and KVD 104
being communicative with the KVSM 134, in alternative
embodiments (not depicted), the system 100 may not include
the KVSM 134, or only one of the DCD 102 and KVD 104
may be communicative with the KVSM 134.

Referring now to FIG. 15, there is shown an exemplary
method 1500 for decoupling user authentication and data
encryption, according to another embodiment. The method
1500 is performed using the DCD 102 and KVD 104. The
method 1500 begins at block 1502 and presumes that the
DCD 102 and KVD 104 are already paired and share the same
S3K. The method 1500 proceeds to block 1504 where the
framework manager 118 generates the EK and KEK, with
neither the EK nor the KEK being generated using the user’s
authentication secret as a seed. The method 1500 proceeds to
block 1506 where the framework manager 118 encrypts the
EK using the KEK to generated an encrypted EK, and then
proceeds to block 1508 where the framework manager 118
stores the encrypted EK in the DCD’s non-volatile memory
126. At block 1510 the framework manager 118 pushes the
KEK to the KVD 104 via the KEK operation dispatcher 158,
following which it deletes the KEK from the volatile memory
124. To subsequently decrypt or encrypt data using the
encrypted EK, the framework manager 118 subsequently
retrieves the KEK from the KVD in block 1514, decrypts the
encrypted EK that is stored in the non-volatile memory 126 at
block 1516, and then uses the EK to encrypt or decrypt data,
as desired. Once encryption or decryption is performed the
EK is optionally deleted or cached in the volatile memory (not
shown), and the method 1500 ends at block 1520.

Experimental Results

Two different kinds of experiments were conducted on the
system 100, with each experiment being performed using
three different scenarios. Scenario 1 modeled protecting
authentication credentials, such as passwords, with 400
authentications per day. Scenario 2 modeled encrypting the
application 106’s folders, with the application 106 launched
1,000 times per day. Scenario 3 modeled data encryption
within the application 106, with the data being 10,000 e-mails
or pictures.

In one experiment to test latency, the KVD 104 was an
Apple™ iPad™ 2 and the DCD 102 was an Apple™
iPhone™ 4S. On the DCD 102, all applications were closed,
airplane mode was turned on, Bluetooth™ was enabled, the
DCD resident component 114 was enabled, automatic screen
brightness adjustment was disabled, and screen brightness
was set to maximum. The DCD 102 fetched KEKs n times,
while monitoring elapsed time T. t,,,, the average time to
retrieve each KEK, was accordingly equaled T/n.

The DCD 102 fetched a KEK 12,573 times in 21,011
seconds, with t,,,, equaling 0.96 seconds. For Scenario 1, this
translates to 6.67 minutes/day; for Scenario 2, this translates
to 16 minutes/day; and for Scenario 3, this translates to 2.67
hours/day. For Scenario 3, one way to decrease latency is to
fetch several KEKs per request; i.e., to use a single authori-
zation and ECDH per n KEK reads.

US 9,137,659 B2

31

In another experiment designed to test energy consumption
by the DCD 102, as a control condition all applications were
closed, airplane mode was turned on, automatic screen
brightness adjustment was disabled, screen brightness was set
to maximum, and the DCD resident component 114 was
disabled. The test condition was identical to the control con-
dition except Bluetooth™ was turned on, the DCD resident
component 114 was enabled, and the DCD 102 repeated
fetched a KEK n times. The DCD 102’s approximate power
consumption functions F .~ (t) (for the control condition) and
F,(t) (for the test condition) were monitored. F () and
F (1) are graphed in FIG. 7.

In FIG. 7, the y-intercept is starting battery capacity for the
DCD 102 and the slope of the curves is current (in mA) drawn
from the battery. The DCD 102 consumed 56 mAhto fetch the
KEK 12,573 times; one KEK retrieval operation accordingly
consumed 56 mAh/12,573=4.6 pAh, or approximately
0.0003% of maximum battery capacity. For Scenario 1 (400
KEKs), the system 100 would consume 0.12% of the bat-
tery’s total energy; for Scenario 2 (1,000 KEKs), the system
100 would consume 0.3% of the battery’s total energy; and
for Scenario 3 (10,000 KEKs), the system 100 would con-
sume 3.0% of the battery’s energy. The system 100’s power
consumption on the DCD 102 is accordingly relatively mini-
mal.

While in the foregoing embodiments symmetric crypto-
graphic keys (e.g. such as those used in AES and DES) are
used, in alternative embodiments (not depicted) asymmetric
cryptographic keys may be used (e.g. public/private cryptog-
raphy).

FIG. 14 shows a block diagram 1400 of a key restoration
process that may be performed if the KVD 104 is lost. In this
embodiment, a public/private key pair is generated when the
KVD 104 and DCD 102 are paired; the public key in FIG. 14
is “PUBKEY” and the private key is “PRIVKEY™”. The pri-
vate key is printed out, for example as a QR code or stored on
a private key storage device 1408 such as a personal com-
puter, USB key, or a server, as shown in FIG. 14. The private
key is not stored on the KVD 104 or DCD 102 for security
reasons. The public key is stored on the DCD 102 and is used
to encrypt the EKs in parallel with the KEKs; thus, the DCD
102 has stored on it E(EK) and Ep;5.z{(EK). This is
shown as block 1402.

If the KVD 104 is lost or stolen the user may proceed to
block 1404, retrieve the private key from the private key
storage device 1408, and decrypt all the EKs on the DCD 102.
If the private key is stored on a server in an enterprise envi-
ronment, then an IT department may be required to perform
some actions prior to permitting the private key to be retrieved
(e.g., call the DCD 102’s owner and confirm that she still
possesses the DCD 102). In another example, if the private
key is printed as a QR code, the DCD 102 will ask the user to
present the paper on which the QR code is printed. As an
added security precaution, if the KVD 104 is lost or stolen the
DCD 102 will also delete all EKs that are encrypted with
KEKs, thus leaving decryption of EKs with the private key as
the only way to obtain these EKs as described above.

Following retrieval of the private key and decryption of the
EKs encrypted using the public key, the user proceeds to
block 1406 where the DCD 102 generates new KEKs each of
which is referred to as KEK' in FIG. 14, encrypts each EK
with a new KEK, and pushes the new KEKSs to the KVD 104.
Once all the new KEKs are stored on the KVD 104, the state
of'the DCD 102 reverts back to a non-compromised state and
the new KVD 104 is ready to be used instead of the lost KVD
104.

25

35

40

45

50

55

60

65

32

While a controller is used in the foregoing embodiments, in
alternative embodiments (not depicted) the controller may
instead be, for example, one or more processors, program-
mable logic controllers, SoCs, field programmable gate
arrays, or application-specific integrated circuits. Examples
of computer readable media are non-transitory and include
disc-based media such as CD-ROMs and DVDs, magnetic
media such as hard drives and other forms of magnetic disk
storage, and semiconductor based media such as flash media,
random access memory, and read only memory.

While each of the DCD controller 144a, KVD controller
1445, and KVSM controller 144¢ are shown as being indi-
vidual controllers, in alternative embodiments (not depicted)
any one or more of the DCD controller 144a, KVD controller
1445, and KVSM controller 144¢ may comprise two or more
controllers, either networked or operating independently to
perform the functionality described above.

It is contemplated that any part of any aspect or embodi-
ment discussed in this specification can be implemented or
combined with any part of any other aspect or embodiment
discussed in this specification.

For the sake of convenience, the exemplary embodiments
above are described as various interconnected functional
blocks. This is not necessary, however, and there may be cases
where these functional blocks are equivalently aggregated
into a single logic device, program or operation with unclear
boundaries. In any event, the functional blocks can be imple-
mented by themselves, or in combination with other pieces of
hardware or software.

FIGS. 8 to 12 and 15 depict flowcharts of exemplary
embodiments of methods. Some of the blocks illustrated in
the flowcharts may be performed in an order other than that
which is described. Also, it should be appreciated that not all
of the blocks described in the flowcharts are required to be
performed, that additional blocks may be added, and that
some of the illustrated blocks may be substituted with other
blocks.

While particular embodiments have been described in the
foregoing, it is to be understood that other embodiments are
possible and are intended to be included herein. It will be clear
to any person skilled in the art that modifications of and
adjustments to the foregoing embodiments, not shown, are
possible.

The invention claimed is:

1. A method for decoupling user authentication and data

encryption on mobile devices, the method comprising:

(a) generating an encryption key (“EK”) for encrypting
data and a key encryption key (“KEK”) for encrypting
the EK, wherein neither the EK nor the KEK are gener-
ated using a user authentication secret as a seed;

(b) obtaining an encrypted EK by encrypting the EK using
the KEK;

(c) storing the encrypted EK on a data container device
(“DCD?);

(d) storing the KEK on a key vault device (“KVD”) that is
distinct from the DCD;

(e) generating a KEK identifier (“KEK_ID”) that identifies
the KEK; and

(D storing the KEK ID in memory accessible to an appli-
cation resident on the DCD that accesses the data and on
the KVD.

2. The method of claim 1 wherein the DCD generates the

KEK, the EK, and the KEK_ID, and further comprising delet-
ing the KEK from the DCD following encrypting the EK.

US 9,137,659 B2

33

3. The method of claim 1 wherein the application encrypts
or decrypts the data by:

(a) obtaining the EK;

(b) encrypting or decrypting the data using the EK; and

(c) deleting the EK following encryption or decryption.

4. The method of claim 3 wherein obtaining the EK com-
prises:

(a) sending a request from the application for the EK,

wherein the request comprises the KEK_ID;

(b) retrieving, from the KVD, the KEK that the KEK_ID
identifies;

(c) decrypting, on the DCD, the EK encrypted using the
KEK retrieved from the KVD; and

(d) sending the EK decrypted using the KEK to the appli-
cation.

5. The method of claim 3 wherein obtaining the EK com-

prises:

(a) sending a request from the application for the EK,
wherein the request comprises the KEK_ID;

(b) determining whether the EK is cached on the DCD; and

(c) whenthe EK is cached on the DCD, sending the EK that
is cached on the DCD to the application.

6. The method of claim 1 further comprising safeguarding

the data by deleting one or both of the EK and KFK.

7. The method of claim 1 wherein the DCD comprises a
memory stick.

8. The method of claim 1 wherein the EK and KEK expire
and further comprising replacing the EK and KEK that expire
with a different EK and a different KEK, respectively.

9. The method of claim 1 wherein the KVD and DCD are
wirelessly linked.

10. The method of claim 9 wherein the Bluetooth™ Low
Energy protocol is used to link the KVD and DCD.

11. The method of claim 9 further comprising:

(a) determining whether the KVD and DCD cease to be

wirelessly linked; and

(b) deleting the EK from the DCD when the KVD and DCD
cease to be wirelessly linked.

12. The method of claim 9 further comprising wirelessly

pairing the KVD and DCD by:

(a) generating a weak shared secret key (“WS2K”) on the
KVD and DCD;

(b) mutually authenticating the KVD and DCD to each
other using the WS2K;

(c) following mutual authentication, generating a strong
secure session key (“S3K”) on the KVD and DCD; and

(d) encrypting subsequent communications between the
KVD and DCD using the S3K.

13. The method of claim 12 wherein the S3K expires and
further comprising replacing the S3K that expires with a
different S3K.

14. The method of claim 12 wherein an Out of Bounds or
Passkey Entry Bluetooth™ Low Energy association model is
used to generate the WS2K.

15. The method of claim 1 wherein a key vault system
manager (“KVSM”) is wirelessly communicative with at
least one of the KVD and DCD, and further comprising:

(a) sending device health information from each of the at

least one of the KVD and DCD to the KVSM;

(b) determining a health status of each of the at least one of
the KVD and DCD based on the device health informa-
tion; and

(c) deleting the EK and KEK based on the health status.

16. The method of claim 15 wherein each of the at least one
of the KVD and DCD determines its own health status.

20

25

30

35

40

45

50

55

65

34

17. The method of claim 15 wherein the KVSM determines
the health status of each of the at least one of the KVD and
DCD and pushes the health status to each of the at least one of
the KVD and DCD.

18. The method of claim 15 further comprising backing up
the EK, KEK, and KEK_ID by pushing them from the DCD
and KVD to the KVSM.

19. The method of claim 1 wherein the EK is encrypted
using a public key having a linked private key, and further
comprising recovering encrypted data following loss of one
or both of the encrypted EK and KEK by:

(a) decrypting, using the private key, the EK encrypted

using the public key;

(b) generating a new KEK, wherein the new KEK is not

generated based on the user authentication secret;

(c) generating a new encrypted EK by encrypting the EK

using the new KEK;

(d) storing the new encrypted EK on the DCD; and

(e) storing the new encrypted KEK on the KVD.

20. The method of claim 1 wherein the EK and KEK are
generated pseudorandomly.

21. A method for decoupling user authentication and data
encryption on mobile devices, the method comprising:

(a) decrypting an encrypted encryption key (“EK”) stored

on a data container device (“DCD”) by:

(1) wirelessly retrieving to the DCD from a key vault
device (“KVD”) a key encryption key (“KEK”) used
to encrypt the EK; and

(ii) decrypting the encrypted EK using the KEK; and

(b) encrypting or decrypting data stored on the DCD using

the EK, wherein neither the EK nor the KEK are gener-

ated using a user authentication secret as a seed;

(c) generating a KEK identifier (“KEK_ID”) that identifies

the KEK; and

(d) storing the KEK_ID in memory accessible to an appli-

cation resident on the DCD that accesses the data and on

the KVD.

22. The method of claim 21 further comprising deleting the
EK from the DCD following encrypting or decrypting data.

23. The method of claim 21 further comprising, prior to
decrypting the encrypted EK:

(a) generating the EK and the KEK;

(b) obtaining the encrypted EK by encrypting the EK using

the KEK;

(c) storing the encrypted EK on the DCD; and

(d) storing the KEK on the KVD.

24. The method of claim 23 wherein the DCD generates the
KEK, the EK, and the KEK_ID, and further comprising delet-
ing the KEK from the DCD following encrypting EK.

25. The method of claim 23 wherein wirelessly retrieving
the KEK from the KVD comprises:

(a) sending a request for the KEK_ID from the DCD to the

KVD, wherein the request comprises the KEK_ID; and

(b) sending the KEK that the KEK_ID identifies from the

KVD to the DCD.

26. The method of claim 21 further comprising safeguard-
ing the data by deleting one or both of the EK and KFK.

27. The method of claim 21 wherein the DCD comprises a
memory stick.

28. The method of claim 21 wherein the EK and KEK
expire and further comprising replacing the EK and KFK that
expire with a different EK and a different KEK, respectively.

29. The method of claim 21 wherein Bluetooth™ Low
Energy protocol is used to link the KVD and DCD.

30. The method of claim 21 further comprising:

(a) determining whether the KVD and DCD cease to be

wirelessly linked; and

US 9,137,659 B2

35

(b) deleting the EK from the DCD when the KVD and DCD
cease to be wirelessly linked.

31. The method of claim 21 further comprising wirelessly

pairing the KVD and DCD by:

(a) generating a weak shared secret key (“WS2K”) on the
KVD and DCD;

(b) mutually authenticating the KVD and DCD to each
other using the WS2K;

(c) following mutual authentication, generating a strong

secure session key (“S3K”) on the KVD and DCD; and !

(d) encrypting subsequent communications between the
KVD and DCD using the S3K.

32. The method of claim 31 wherein the S3K expires and
further comprising replacing the S3K that expires with a
different S3K.

33. The method of claim 31 wherein an Out of Bounds or
Passkey Entry Bluetooth™ Low Energy association model is
used to generate the WS2K.

34. The method of claim 21 wherein a key vault system
manager (“KVSM”) is wirelessly communicative with at
least one of the KVD and DCD, and further comprising:

(a) sending device health information from each of the at

least one of the KVD and DCD to the KVSM;

(b) determining a health status of each of the at least one of
the KVD and DCD based on the device health informa-
tion; and

(c) deleting the EK and KEK based on the health status.

35. The method of claim 34 wherein each of the at least one
of the KVD and DCD determines its own health status.

36. The method of claim 34 wherein KVSM determines the
health status of each of the at least one of the KVD and DCD
and pushes the health status to each of the at least one of the
KVD and DCD.

37. The method of claim 34 further comprising backing up
the EK, KEK, and KEK_ID by pushing them from the DCD
and KVD to the KVSM.

38. The method of claim 21 wherein the EK is encrypted
using a public key having a linked private key, and further
comprising recovering encrypted data following loss of one
or both of the encrypted EK and KEK by:

(a) decrypting, using the private key, the EK encrypted

using the public key;

(b) generating a new KEK, wherein the new KEK is not
generated based on the user authentication secret;

(c) generating a new encrypted EK by encrypting the EK
using the new KEK;

(d) storing the new encrypted EK on the DCD; and

(e) storing the new encrypted KEK on the KVD.

39. The method of claim 21 wherein the EK and KEK are
generated pseudorandomly.

40. A system for decoupling user authentication and data
encryption on mobile devices, the system comprising:

(a) a data container device (“DCD”) wirelessly linked to a
key vault device (“KVD”), the DCD comprising a DCD
memory and a DCD controller communicative with the
DCD memory, the DCD memory having encoded
thereon statements and instructions cause the DCD con-
troller to:

(1) generate an encryption key (“EK”) for encrypting
data and a key encryptionkey (“KEK”) for encrypting
the EK, wherein neither the EK nor the KEK are
generated using a user authentication secret as a seed;

(ii) obtain an encrypted EK by encrypting the EK using
KEK;

(iii) store the encrypted EK in the DCD memory;

(iv) send the KEK to the KVD;

15

30

40

45

50

55

65

36
(v) generate a KEK identifier (“KEK_ID”) that identi-
fies the KEK; and
(vi) store the KEK_ID in the DCD memory, wherein the
DCD memory is accessible to an application resident
on the DCD that accesses the data; and

(b) the KVD comprising a KVD memory and a KVD

controller communicative with the KVD memory, the
KVD memory having encoded thereon statements and
instructions to cause the KVD controller to:

(1) receive the KEK from the DCD; and

(ii) store the KEK in the KVD memory.

41. The system of claim 40 wherein the DCD memory is
further encoded to cause the DCD controller to generate the
KEK, the EK, and the KEK_ID, and to delete the KEK from
the DCD following encrypting the EK.

42. The system of claim 40 wherein the DCD memory is
further encoded to cause the application to encrypt or decrypt
the data by:

(a) obtaining the EK;

(b) encrypting or decrypting the data using the EK; and

(c) deleting the EK following encryption or decryption.

43. The system of claim 42 wherein obtaining the EK
comprises:

(a) sending a request from the application for the EK,

wherein the request comprises the KEK_ID;

(b) retrieving, from the KVD, the KEK that the KEK_ID

identifies;

(c) decrypting, on the DCD, the EK encrypted using the

KEK retrieved from the KVD; and

(d) sending the EK decrypted using the KEK to the appli-

cation.

44. The system of claim 42 wherein obtaining the EK
comprises:

(a) sending a request from the application for the EK,

wherein the request comprises the KEK_ID;

(b) determining whether the EK is cached on the DCD; and

(c) when the EK is cached on the DCD, sending the EK that

is cached on the DCD to the application.

45. The system of claim 40 wherein the DCD memory is
further encoded to cause the DCD controller to safeguard the
data by deleting one or both of the EK and KEK.

46. The system of claim 40 wherein the DCD comprises a
memory stick.

47. The system of claim 40 wherein the DCD memory is
further encoded to cause the EK and KEK to expire and to
cause the DCD controller to replace the EK and KEK that
expire with a different EK and a different KEK, respectively.

48. The system of claim 40 wherein the Bluetooth™ Low
Energy protocol is used to link the KVD and DCD.

49. The system of claim 40 wherein the DCD memory is
further configured to cause the DCD controller to:

(a) determine whether the KVD and DCD cease to be

wirelessly linked; and

(b) delete the EK from the DCD when the KVD and DCD

cease to be wirelessly linked.

50. The system of claim 40 wherein the DCD memory and
KVD memory are further encoded to cause the DCD and
KVD, respectively, to wirelessly pair with each other by:

(a) generating a weak shared secret key (“WS2K”) on the

KVD and DCD;

(b) mutually authenticating the KVD and DCD to each

other using the WS2K;

(c) following mutual authentication, generating a strong

secure session key (“S3K”) on the KVD and DCD; and

(d) encrypting subsequent communications between the

KVD and DCD using the S3K.

US 9,137,659 B2

37

51. The system of claim 50 wherein the S3K expires and
wherein the DCD memory and the KVD memory are further
encoded to cause the DCD and KVD, respectively, to replace
the S3K that expires with a different S3K.

52. The system of claim 50 wherein an Out of Bounds or
Passkey Entry Bluetooth™ Low Energy association model is
used to generate the WS2K.

53. The system of claim 40 further comprising:

(a) akey vault system manager (“KVSM”) wirelessly com-
municative with the KVD and DCD, the KVSM com-
prising a KVSM memory communicative with a KVSM
controller, the KVSM memory having encoded thereon
statements and instructions to cause the KVSM control-
ler to receive device health information from the KVD
and DCD,

wherein the DCD memory and the KVD memory are fur-
ther encoded to cause the DCD controller and the KVD
controller, respectively, to send device health informa-
tion to the KVSM.

54. The system of claim 53 wherein the DCD memory and
the KVD memory are further encoded to cause the DCD
controller and the KVD controller, respectively, to:

(a) determine the health status of the DCD and the KVD,

respectively, from the device health information; and

(b) delete the EK and KEK based on the health status.

55. The system of claim 53 wherein the KVSM memory is
further encoded to cause the KVSM controller to:

(a) determine health statuses of the KVD and DCD from

the device health information; and

(b) push the health statuses to the KVD and DCD,

wherein the DCD memory and the KVD memory are fur-
ther encoded to cause the DCD controller and the KVD
controller, respectively, to delete the EK and KEK based
on one or more of the health status.

56. The system claim 53 wherein the DCD memory and the
KVD memory are further encoded to back up the EK, KEK,
and KEK_ID by pushing them to the KVSM.

57. The system of claim 40 wherein the DCD memory has
stored thereon the EK encrypted using a public key having a
linked private key, and wherein the DCD memory is further
encoded to cause the DCD controller to:

(a) decrypt, using the private key, the EK encrypted using

the public key;

(b) generate a new KEK, wherein the new KEK is not
generated based on the user authentication secret;

(c) generate a new encrypted EK by encrypting the EK
using the new KEK;

(d) store the new encrypted EK in the DCD memory; and

(e) send the new encrypted KEK to the KVD for storage.

58. The system of claim 40 wherein the EK and KEK are
generated pseudorandomly.

59. A system for decoupling user authentication and data
encryption on mobile devices, the system comprising a data
container device (“DCD”) wirelessly linked to a key vault
device (“KVD”), the DCD comprising a DCD memory and a
DCD controller communicative with the DCD memory and
the KVD comprising a KVD memory and a KVD controller
communicative with the KVD memory, the DCD memory
having encoded thereon statements and instructions to cause
the DCD controller to:

(a) decrypt an encrypted encryption key (“EK”) stored in

the DCD memory by:

(1) wirelessly retrieving from the KVD a key encryption
key (“KEK”) used to encrypt the EK; and

(ii) decrypting the encrypted EK using the KEK;

5

10

15

20

25

30

35

40

45

50

55

60

38

(b) encrypt or decrypt data stored in the DCD memory
using the EK, wherein neither the EK nor the KEK are
generated using a user authentication secret as a seed;

(c) generate a KEK identifier (“KEK_ID”) that identifies
the KEK; and

(d) store the KEK_ID in the DCD memory, wherein the
DCD memory is accessible to an application resident on
the DCD that accesses the data.

60. The system of claim 59 wherein the DCD memory is
further encoded to cause DCD controller to delete the EK
following encrypting or decrypting data.

61. The system of claim 59 wherein the DCD memory is
further encoded to cause the DCD controller to:

(a) generate the EK and the KEK;

(b) obtain the encrypted EK by encrypting the EK using the

KEK;

(c) store the encrypted EK in the DCD memory; and

(d) send the KEK to the KVD.

62. The system of claim 61 wherein the DCD memory is
further encoded to cause the DCD controller to generate the
KEK, the EK, and the KEK_ID, and to delete the KEK from
the DCD following encrypting the EK.

63. The system of claim 61 wherein wirelessly retrieving
the KEK from the KVD comprises:

(a) sending a request for the KEK_ID from the DCD to the

KVD, wherein the request comprises the KEK_ID; and

(b) sending the KEK that the KEK_ID identifies from the
KVD to the DCD.

64. The system of claim 59 wherein the DCD memory is
further encoded to cause the DCD controller to safeguard the
data by deleting one or both of the EK and KEK.

65. The system of claim 59 wherein the DCD comprises a
memory stick.

66. The system of claim 59 wherein the DCD memory is
further encoded to cause the EK and KEK to expire and to
cause the DCD controller to replace the EK and KEK that
expire with a different EK and a different KEK, respectively.

67. The system of claim 59 wherein the Bluetooth™ Low
Energy protocol is used to link the KVD and DCD.

68. The system of claim 59 wherein the DCD memory is
further configured to cause the DCD controller to:

(a) determine whether the KVD and DCD cease to be

wirelessly linked; and

(b) delete the EK from the DCD when the KVD and DCD
cease to be wirelessly linked.

69. The system of claim 59 wherein the DCD memory and
KVD memory are further encoded to cause the DCD and
KVD, respectively, to wirelessly pair with each other by:

(a) generating a weak shared secret key (“WS2K”) on the

KVD and DCD;

(b) mutually authenticating the KVD and DCD to each
other using the WS2K;

(c) following mutual authentication, generating a strong
secure session key (“S3K”) on the KVD and DCD; and

(d) encrypting subsequent communications between the
KVD and DCD using the S3K.

70. The system of claim 69 wherein the S3K expires and
wherein the DCD memory and the KVD memory are further
encoded to cause the DCD and KVD, respectively, to replace
the S3K that expires with a different S3K.

71. The system of claim 69 wherein an Out of Bounds or
Passkey Entry Bluetooth™ Low Energy association model is
used to generate the WS2K.

72. The system of claim 59 further comprising:

(a) akey vault system manager (“KVSM”) wirelessly com-

municative with the KVD and DCD, the KVSM com-
prising a KVSM memory communicative witha KVSM

US 9,137,659 B2

39

controller, the KVSM memory having encoded thereon
statements and instructions to cause the KVSM control-
ler to receive device health information from the KVD
and DCD,

wherein the DCD memory and the KVD memory are fur-

ther encoded to cause the DCD controller and the KVD
controller, respectively, to send device health informa-
tion to the KVSM.

73. The system of claim 72 wherein the DCD memory and
the KVD memory are further encoded to cause the DCD
controller and the KVD controller, respectively, to:

(a) determine the health status of the DCD and the KVD,

respectively, from the device health information; and

(b) delete the EK and KEK based on the health status.

74. The system of claim 72 wherein the KVSM controller
is further encoded to cause the KVSM controller to:

(a) determine health statuses of the KVD and DCD from

the device health information; and

(b) push the health statuses to the KVD and DCD,

wherein the DCD memory and the KVD memory are fur-

ther encoded to cause the DCD controller and the KVD
controller, respectively, to delete the EK and KEK based
on one or more of the health status.

75. The system of claim 72 wherein the DCD memory and
the KVD memory are further encoded to back up the EK,
KEK, and KEK_ID by pushing them to the KVSM.

76. The system of claim 59 wherein the DCD memory has
stored thereon the EK encrypted using a public key having a
linked private key, and wherein the DCD memory is further
encoded to cause the DCD controller to:

(a) decrypt, using the private key, the EK encrypted using

the public key;

(b) generate a new KEK, wherein the new KEK is not

generated based on the user authentication secret;

(c) generate a new encrypted EK by encrypting the EK

using the new KEK;

(d) store the new encrypted EK in the DCD memory; and

(e) send the new encrypted KEK to the KVD for storage.

40
77. The system of claim 59 wherein the EK and KEK are

generated pseudorandomly.

78. A non-transitory computer readable medium having

encoded thereon statements and instructions to cause a con-

5 troller to:

10

15

20

25

30

35

(a) generate an encryption key (“EK”) for encrypting data
and a key encryption key (“KEK”) for encrypting the
EK, wherein neither the EK nor the KEK are generated
using a user authentication secret as a seed;

(b) obtain an encrypted EK by encrypting the EK using the
KEK;

(c) store the encrypted EK on a data container device
(“DCD?);

(d) store the KEK on a key vault device (“KVD”) that is
distinct from the DCD;

(e) generating a KEK identifier (“KEK_ID”) that identifies
the KEK; and

(D storing the KEK_ID in memory accessible to an appli-
cation resident on the DCD that accesses the data and on
the KVD.

79. A non-transitory computer readable medium having

encoded thereon statements and instructions to cause a con-
troller to:

(a) decrypt an encrypted encryption key (“EK”) stored on
a data container device (“DCD”) by:

(1) wirelessly retrieving to the DCD from a key vault
device (“KVD”) a key encryption key (“KEK”) used
to encrypt the EK; and

(ii) decrypting the encrypted EK using the KEK;

(b) encrypt or decrypt data stored on the DCD using the
EK, wherein neither the EK nor the KEK are generated
using a user authentication secret as a seed;

(c) generating a KEK identifier (“KEK_ID”) that identifies
the KEK; and

(d) storing the KEK_ID in memory accessible to an appli-
cation resident on the DCD that accesses the data and on
the KVD.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,137,659 B2 Page 1 of 1
APPLICATION NO. : 13/943070

DATED : September 15, 2015

INVENTORC(S) : Hassan Khosravi, Ildar Muslukhov and Peter Luong

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 32, claim 1, line 62, delete “KEK ID” and insert in its place --KED_ID--.

Signed and Sealed this
Twenty-second Day of March, 2016

Tecbatle X Zen

Michelle K. Lee
Director of the United States Patent and Trademark Office

